
Benedikt Warth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5317105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of multiple mycotoxins in raw milk of three different animal species in Nigeria. Food Control, 2022, 131, 108258.	2.8	24
2	Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine. Chemosphere, 2022, 287, 132226.	4.2	22
3	Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. Environment International, 2022, 158, 106940.	4.8	9
4	Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environment International, 2022, 158, 106996.	4.8	24
5	N-acetyl cysteine alters the genotoxic and estrogenic properties of Alternaria toxins in naturally occurring mixtures. Emerging Contaminants, 2022, 8, 30-38.	2.2	7
6	Trace analysis of emerging and regulated mycotoxins in infant stool by LC-MS/MS. Analytical and Bioanalytical Chemistry, 2022, 414, 7503-7516.	1.9	11
7	Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development. Nature Communications, 2022, 13, 2653.	5.8	23
8	Quantifying up to 90 polyphenols simultaneously in human bio-fluids by LC-MS/MS. Analytica Chimica Acta, 2022, 1216, 339977.	2.6	13
9	PeakBot: machine-learning-based chromatographic peak picking. Bioinformatics, 2022, 38, 3422-3428.	1.8	10
10	Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends in Microbiology, 2022, 30, 1084-1100.	3.5	13
11	Natural contaminants in infant food: The case of regulated and emerging mycotoxins. Food Control, 2021, 123, 107676.	2.8	22
12	Assessing Mixture Effects of Cereulide and Deoxynivalenol on Intestinal Barrier Integrity and Uptake in Differentiated Human Caco-2 Cells. Toxins, 2021, 13, 189.	1.5	7
13	Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective. Annual Review of Food Science and Technology, 2021, 12, 461-484.	5.1	17
14	In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship. Archives of Toxicology, 2021, 95, 2533-2549.	1.9	12
15	Risk-Based Chemical Ranking and Generating a Prioritized Human Exposome Database. Environmental Health Perspectives, 2021, 129, 47014.	2.8	35
16	<i>Alternaria</i> toxins—Still emerging?. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4390-4406.	5.9	51
17	Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host and Microbe, 2021, 29, 1558-1572.e6.	5.1	80
18	A review of microbes and chemical contaminants in dairy products in subâ€ S aharan Africa. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1188-1220.	5.9	16

#	Article	IF	CITATIONS
19	Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Analytical Chemistry, 2021, 93, 13870-13879.	3.2	47
20	Evaluating the Performance of Lateral Flow Devices for Total Aflatoxins with Special Emphasis on Their Robustness under Sub-Saharan Conditions. Toxins, 2021, 13, 742.	1.5	6
21	An Introduction to the Benchmarking and Publications for Non-Targeted Analysis Working Group. Analytical Chemistry, 2021, 93, 16289-16296.	3.2	30
22	Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104.	5.8	177
23	Drug–Exposome Interactions: The Next Frontier in Precision Medicine. Trends in Pharmacological Sciences, 2020, 41, 994-1005.	4.0	34
24	Gut microbiota and undigested food constituents modify toxin composition and suppress the genotoxicity of a naturally occurring mixture of Alternaria toxins in vitro. Archives of Toxicology, 2020, 94, 3541-3552.	1.9	13
25	Impact of Mixture Effects between Emerging Organic Contaminants on Cytotoxicity: A Systems Biological Understanding of Synergism between Tris(1,3-dichloro-2-propyl)phosphate and Triphenyl Phosphate. Environmental Science & Technology, 2020, 54, 10722-10734.	4.6	16
26	Microfiltration results in the loss of analytes and affects the in vitro genotoxicity of a complex mixture of Alternaria toxins. Mycotoxin Research, 2020, 36, 399-408.	1.3	8
27	METLIN MS2 molecular standards database: a broad chemical and biological resource. Nature Methods, 2020, 17, 953-954.	9.0	102
28	Exposure to Mycotoxin-Mixtures via Breast Milk: An Ultra-Sensitive LC-MS/MS Biomonitoring Approach. Frontiers in Chemistry, 2020, 8, 423.	1.8	31
29	Longitudinal assessment of mycotoxin co-exposures in exclusively breastfed infants. Environment International, 2020, 142, 105845.	4.8	25
30	Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control, 2020, 118, 107388.	2.8	15
31	Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chemical Biology, 2020, 15, 970-981.	1.6	25
32	Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells. Archives of Toxicology, 2020, 94, 833-844.	1.9	17
33	First determination of the highly genotoxic fungal contaminant altertoxin II in a naturally infested apple sample. Emerging Contaminants, 2020, 6, 82-86.	2.2	12
34	Metabolomics Profiles of Smokers from Two Ethnic Groups with Differing Lung Cancer Risk. Chemical Research in Toxicology, 2020, 33, 2087-2098.	1.7	14
35	A Generic Liquid Chromatographyâ^'Tandem Mass Spectrometry Exposome Method for the Determination of Xenoestrogens in Biological Matrices. Analytical Chemistry, 2019, 91, 11334-11342.	3.2	53
36	The Fate of Altertoxin II During Tomato Processing Steps at a Laboratory Scale. Frontiers in Nutrition, 2019, 6, 92.	1.6	15

#	Article	IF	CITATIONS
37	Transfer and Metabolism of the Xenoestrogen Zearalenone in Human Perfused Placenta. Environmental Health Perspectives, 2019, 127, 107004.	2.8	47
38	Bioavailability, metabolism, and excretion of a complex Alternaria culture extract versus altertoxin II: a comparative study in rats. Archives of Toxicology, 2019, 93, 3153-3167.	1.9	28
39	A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nature Communications, 2019, 10, 4366.	5.8	82
40	Naturally occurring mixtures of Alternaria toxins: anti-estrogenic and genotoxic effects in vitro. Archives of Toxicology, 2019, 93, 3021-3031.	1.9	33
41	The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol. Archives of Toxicology, 2019, 93, 1729-1743.	1.9	30
42	Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control, 2019, 102, 157-165.	2.8	56
43	Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food and Chemical Toxicology, 2019, 128, 171-179.	1.8	31
44	Palbociclib and Fulvestrant Act in Synergy to Modulate Central Carbon Metabolism in Breast Cancer Cells. Metabolites, 2019, 9, 7.	1.3	10
45	First insights into Alternaria multi-toxin in vivo metabolism. Toxicology Letters, 2019, 301, 168-178.	0.4	52
46	Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nature Protocols, 2018, 13, 633-651.	5.5	207
47	Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Analytica Chimica Acta, 2018, 1019, 84-92.	2.6	101
48	Metabolomics activity screening for identifying metabolites that modulate phenotype. Nature Biotechnology, 2018, 36, 316-320.	9.4	319
49	From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters. Food Chemistry, 2018, 254, 115-121.	4.2	51
50	METLIN: A Technology Platform for Identifying Knowns and Unknowns. Analytical Chemistry, 2018, 90, 3156-3164.	3.2	696
51	Metabolomics Reveals that Dietary Xenoestrogens Alter Cellular Metabolism Induced by Palbociclib/Letrozole Combination Cancer Therapy. Cell Chemical Biology, 2018, 25, 291-300.e3.	2.5	52
52	Delphinidin protects colon carcinoma cells against the genotoxic effects of the mycotoxin altertoxin II. Toxicology Letters, 2018, 284, 136-142.	0.4	40
53	The secondary Fusarium metabolite aurofusarin induces oxidative stress, cytotoxicity and genotoxicity in human colon cells. Toxicology Letters, 2018, 284, 170-183.	0.4	26
54	An integrated in silico/in vitro approach to assess the xenoestrogenic potential of Alternaria mycotoxins and metabolites. Food Chemistry, 2018, 248, 253-261.	4.2	57

#	Article	IF	CITATIONS
55	The ripening disorder berry shrivel affects anthocyanin biosynthesis and sugar metabolism in Zweigelt grape berries. Planta, 2018, 247, 471-481.	1.6	15
56	Traditional processing impacts mycotoxin levels and nutritional value of ogi – A maize-based complementary food. Food Control, 2018, 86, 224-233.	2.8	36
57	Monitoring Early Life Mycotoxin Exposures via LC-MS/MS Breast Milk Analysis. Analytical Chemistry, 2018, 90, 14569-14577.	3.2	63
58	Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicology Letters, 2018, 299, 104-117.	0.4	17
59	Fusarium culmorum multi-toxin screening in malting and brewing by-products. LWT - Food Science and Technology, 2018, 98, 642-645.	2.5	12
60	Tracking emerging mycotoxins in food: development of an LC-MS/MS method for free and modified Alternaria toxins. Analytical and Bioanalytical Chemistry, 2018, 410, 4481-4494.	1.9	93
61	Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS Nano, 2018, 12, 6938-6948.	7.3	37
62	Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicology Letters, 2018, 295, 424-437.	0.4	26
63	Autonomous Multimodal Metabolomics Data Integration for Comprehensive Pathway Analysis and Systems Biology. Analytical Chemistry, 2018, 90, 8396-8403.	3.2	24
64	Metabolizing Data in the Cloud. Trends in Biotechnology, 2017, 35, 481-483.	4.9	29
65	A mini-survey of moulds and mycotoxins in locally grown and imported wheat grains in Nigeria. Mycotoxin Research, 2017, 33, 59-64.	1.3	20
66	Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food and Chemical Toxicology, 2017, 107, 10-19.	1.8	38
67	Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International Journal of Food Microbiology, 2017, 251, 24-32.	2.1	78
68	Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes. Analytical Chemistry, 2017, 89, 1254-1259.	3.2	23
69	Exposome-Scale Investigations Guided by Global Metabolomics, Pathway Analysis, and Cognitive Computing. Analytical Chemistry, 2017, 89, 11505-11513.	3.2	106
70	Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria. International Journal of Food Microbiology, 2017, 258, 73-80.	2.1	23
71	Combinatory estrogenic effects between the isoflavone genistein and the mycotoxins zearalenone and alternariol in vitro. Molecular Nutrition and Food Research, 2017, 61, 1600526.	1.5	50
72	Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control, 2017, 73, 1159-1168.	2.8	40

#	Article	IF	CITATIONS
73	Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro. Archives of Toxicology, 2017, 91, 1447-1460.	1.9	103
74	Impact of phase I metabolism on uptake, oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells. Archives of Toxicology, 2017, 91, 1213-1226.	1.9	27
75	Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids. Cancer & Metabolism, 2017, 5, 9.	2.4	18
76	Identification and Characterization of Carboxylesterases from Brachypodium distachyon Deacetylating Trichothecene Mycotoxins. Toxins, 2016, 8, 6.	1.5	17
77	Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates Substrate-Responsive and Defense-Responsive Genes. Frontiers in Microbiology, 2016, 7, 1113.	1.5	48
78	Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Scientific Reports, 2016, 6, 33854.	1.6	40
79	Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chemical Research in Toxicology, 2016, 29, 1087-1097.	1.7	77
80	Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco-2 cells. Toxicology Letters, 2016, 241, 1-8.	0.4	59
81	The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate. Toxins, 2015, 7, 3112-3126.	1.5	30
82	Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to <i>Fusarium graminearum</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2579-2592.	0.8	45
83	GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11, 722-738.	1.4	117
84	Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat. Journal of Chromatography A, 2015, 1423, 183-189.	1.8	13
85	Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Analytical and Bioanalytical Chemistry, 2015, 407, 1033-1039.	1.9	68
86	Fate of mycotoxins in two popular traditional cereal-based beverages (kunu-zaki and pito) from rural Nigeria. LWT - Food Science and Technology, 2015, 60, 137-141.	2.5	46
87	In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Archives of Toxicology, 2015, 89, 949-960.	1.9	52
88	Utilising an LC-MS/MS-based multi-biomarker approach to assess mycotoxin exposure in the Bangkok metropolitan area and surrounding provinces. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 2040-2046.	1.1	52
89	Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environment International, 2014, 66, 138-145.	4.8	129
90	Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Research, 2014, 30, 89-102.	1.3	85

Benedikt Warth

#	Article	IF	CITATIONS
91	Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron, 2014, 70, 5260-5266.	1.0	16
92	Mycological Analysis and Multimycotoxins in Maize from Rural Subsistence Farmers in the Former Transkei, South Africa. Journal of Agricultural and Food Chemistry, 2013, 61, 8232-8240.	2.4	47
93	LC-MS/MS-based multibiomarker approaches for the assessment of human exposure to mycotoxins. Analytical and Bioanalytical Chemistry, 2013, 405, 5687-5695.	1.9	88
94	Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control, 2013, 31, 438-453.	2.8	170
95	Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. International Journal of Food Microbiology, 2013, 162, 231-236.	2.1	38
96	New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicology Letters, 2013, 220, 88-94.	0.4	165
97	Incidence and consumer awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria. Food Control, 2013, 30, 596-601.	2.8	72
98	Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food and Chemical Toxicology, 2013, 62, 927-934.	1.8	102
99	Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food and Chemical Toxicology, 2013, 62, 231-237.	1.8	71
100	Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food and Chemical Toxicology, 2013, 62, 217-225.	1.8	123
101	Comparison of single and multi-analyte methods based on LC-MS/MS for mycotoxin biomarker determination in human urine. World Mycotoxin Journal, 2013, 6, 355-366.	0.8	21
102	Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1288-1299.	1.1	43
103	Synthesis of deoxynivalenol-3-ß-D-O-glucuronide for its use as biomarker for dietary deoxynivalenol exposure. World Mycotoxin Journal, 2012, 5, 127-132.	0.8	37
104	Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chemical Research in Toxicology, 2012, 25, 2715-2717.	1.7	73
105	Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. Journal of Agricultural and Food Chemistry, 2012, 60, 9352-9363.	2.4	204
106	Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicology Letters, 2012, 211, 85-90.	0.4	145
107	Natural occurrence of mycotoxins in peanut cake from Nigeria. Food Control, 2012, 27, 338-342.	2.8	75
108	Fast and reproducible chemical synthesis of zearalenone-14-β,D-glucuronide. World Mycotoxin Journal, 2012, 5, 289-296.	0.8	28

Benedikt Warth

#	Article	IF	CITATIONS
109	Development and validation of a rapid multiâ€biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass Spectrometry, 2012, 26, 1533-1540.	0.7	121
110	Multi-microbial metabolites in fonio millet (acha) and sesame seeds in Plateau State, Nigeria. European Food Research and Technology, 2012, 235, 285-293.	1.6	35
111	Direct quantification of deoxynivalenol glucuronide in human urine as biomarker of exposure to the Fusarium mycotoxin deoxynivalenol. Analytical and Bioanalytical Chemistry, 2011, 401, 195-200.	1.9	57
112	Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. Journal of Biotechnology, 2010, 147, 37-45.	1.9	38