Yikang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5315776/publications.pdf

Version: 2024-02-01

623734 794594 1,068 21 14 19 h-index citations g-index papers 21 21 21 1700 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio. Advanced Materials, 2016, 28, 9223-9230.	21.0	254
2	Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity. Advanced Materials, 2016, 28, 2229-2237.	21.0	178
3	Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Description (2019), 11, 8148-8154.	8.0	120
4	SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chemical Engineering Journal, 2019, 370, 677-683.	12.7	77
5	Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers. Carbon, 2017, 124, 296-307.	10.3	56
6	Hybrid Protective Layer for Stable Sodium Metal Anodes at High Utilization. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 37693-37700.	8.0	51
7	Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 562-565.	6.0	48
8	Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode. Energy Storage Materials, 2020, 24, 588-593.	18.0	48
9	Building Better Li Metal Anodes in Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges and Progress. ACS Applied Materials & Liquid Electrolyte: Challenges & L	8.0	41
10	3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Applied Energy Materials, 2019, 2, 3869-3877.	5.1	40
11	Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode. Electrochimica Acta, 2019, 294, 413-422.	5.2	28
12	Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Materials, 2020, 33, 329-335.	18.0	28
13	Outdoor experiment of flexible sandwiched graphite-PET sheets based self-snow-thawing pavement. Cold Regions Science and Technology, 2016, 122, 10-17.	3.5	24
14	Achieving SEI preformed graphite in flow cell to mitigate initial lithium loss. Carbon, 2022, 196, 589-595.	10.3	18
15	Fluoroalkyl-silane-modified 3D graphene foam with improved Joule-heating effects and high hydrophobicity-derived anti-icing properties. Journal of Materials Science, 2018, 53, 528-537.	3.7	15
16	Mild synthesis of monodisperse tin nanocrystals and tin chalcogenide hollow nanostructures. Chemical Communications, 2017, 53, 11001-11004.	4.1	14
17	Monodisperse tin nanoparticles and hollow tin oxide nanospheres as anode materials for high performance lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 473-476.	6.0	14
18	Approaching theoretical specific capacity of iron-rich lithium iron silicate using graphene-incorporation and fluorine-doping. Journal of Materials Chemistry A, 2022, 10, 4006-4014.	10.3	10

YIKANG YU

#	Article	IF	CITATIONS
19	Surface Proton Conduction over Catalyst Support via Chemically Grafted Groups. Journal of the Electrochemical Society, 2020, 167, 164509.	2.9	4
20	Fluidic behaviours in a 2D folded-graphene aerogel monolith. Journal Physics D: Applied Physics, 2015, 48, 425301.	2.8	0
21	Offsetting Initial Lithium Loss By Pre-Forming SEI Layer on Graphite Surface. ECS Meeting Abstracts, 2022, MA2022-01, 394-394.	0.0	0