## Cara H Haney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5315035/publications.pdf

Version: 2024-02-01

29 papers 1,668 citations

643344 15 h-index 29 g-index

45 all docs 45 docs citations

45 times ranked

2572 citing authors

| #  | Article                                                                                                                                                                                        | IF  | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and c-di-GMP Synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 2022, 204, JB0029721.                               | 1.0 | 20        |
| 2  | Commensal Pseudomonas fluorescens Strains Protect <i>Arabidopsis</i> from Closely Related Pseudomonas Pathogens in a Colonization-Dependent Manner. MBio, 2022, 13, e0289221.                  | 1.8 | 19        |
| 3  | Sticky Pi is a high-frequency smart trap that enables the study of insect circadian activity under natural conditions. PLoS Biology, 2022, 20, e3001689.                                       | 2.6 | 11        |
| 4  | Pseudomonas Strains Induce Transcriptional and Morphological Changes and Reduce Root Colonization of Verticillium spp Frontiers in Microbiology, 2021, 12, 652468.                             | 1.5 | 6         |
| 5  | FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. Nature Plants, 2021, 7, 644-654.                                                        | 4.7 | 102       |
| 6  | Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?. Molecular Plant-Microbe Interactions, 2021, 34, 462-469. | 1.4 | 52        |
| 7  | Drought dampens microbiome development. Nature Plants, 2021, 7, 994-995.                                                                                                                       | 4.7 | 23        |
| 8  | Mechanisms in plant–microbiome interactions: lessons from model systems. Current Opinion in Plant Biology, 2021, 62, 102003.                                                                   | 3.5 | 20        |
| 9  | The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 2021, 79, 25-88.                                                           | 1.0 | 7         |
| 10 | Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1â€dependent manner. New Phytologist, 2020, 228, 728-740.                                  | 3.5 | 32        |
| 11 | Comparative Genomics Identified a Genetic Locus in Plant-Associated <i>Pseudomonas</i> spp. That Is Necessary for Induced Systemic Susceptibility. MBio, 2020, $11$ , .                        | 1.8 | 9         |
| 12 | Harnessing the genetic potential of the plant microbiome. Biochemist, 2020, 42, 20-25.                                                                                                         | 0.2 | 20        |
| 13 | Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic<br>Acid-Mediated Lowering of Environmental pH. Current Biology, 2019, 29, 3913-3920.e4.                    | 1.8 | 112       |
| 14 | Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated <i>Pseudomonas</i> . ISME Journal, 2019, 13, 1575-1588.                                                | 4.4 | 84        |
| 15 | An Improved Bioassay to Study Arabidopsis Induced Systemic Resistance (ISR) Against Bacterial Pathogens and Insect Pests. Bio-protocol, 2019, 9, e3236.                                        | 0.2 | 11        |
| 16 | Bacterial genomics of plant adaptation. Nature Genetics, 2018, 50, 2-4.                                                                                                                        | 9.4 | 1         |
| 17 | Rhizosphereâ€associated <i>Pseudomonas</i> induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Molecular Ecology, 2018, 27, 1833-1847.              | 2.0 | 58        |
| 18 | A Genome-Wide Screen Identifies Genes in Rhizosphere-Associated <i>Pseudomonas</i> Required to Evade Plant Defenses. MBio, 2018, 9, .                                                          | 1.8 | 82        |

| #  | Article                                                                                                                                                                                        | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain. Frontiers in Plant Science, 2018, 9, 76.                        | 1.7 | 8         |
| 20 | Plasmid-powered evolutionary transitions. ELife, 2017, 6, .                                                                                                                                    | 2.8 | 1         |
| 21 | Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1, .                                                                                   | 4.7 | 345       |
| 22 | GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. ELife, 2015, 4, .                                                                        | 2.8 | 212       |
| 23 | Plant microbiome blueprints. Science, 2015, 349, 788-789.                                                                                                                                      | 6.0 | 42        |
| 24 | Innate immunity in plants and animals: Differences and similarities. Biochemist, 2014, 36, 40-45.                                                                                              | 0.2 | 17        |
| 25 | Development of Tools for the Biochemical Characterization of the Symbiotic Receptor-Like Kinase DMI2. Molecular Plant-Microbe Interactions, 2013, 26, 216-226.                                 | 1.4 | 11        |
| 26 | Symbiotic Rhizobia Bacteria Trigger a Change in Localization and Dynamics of the <i>Medicago truncatula</i> Receptor Kinase LYK3. Plant Cell, 2011, 23, 2774-2787.                             | 3.1 | 96        |
| 27 | Plant flotillins are required for infection by nitrogen-fixing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 478-483.                  | 3.3 | 213       |
| 28 | Hostâ€"Pathogen Interactions Between Phytophthora infestans and the Solanaceous Hosts<br>Calibrachoa × hybridus, Petunia × hybrida, and Nicotiana benthamiana. Plant Disease, 2006, 90, 24-32. | 0.7 | 26        |
| 29 | Plant-Beneficial <i>Pseudomonas</i> Spp. Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. SSRN Electronic Journal, 0, , .                          | 0.4 | 5         |