Dirk Bosbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314727/publications.pdf

Version: 2024-02-01

202 papers 6,360 citations

43 h-index 91884 69 g-index

205 all docs 205 docs citations

times ranked

205

5012 citing authors

#	Article	IF	CITATIONS
1	Structural incorporation of lanthanides (La, Eu, and Lu) into U3O8 as a function of the ionic radius. MRS Advances, 2022, 7, 128-133.	0.9	6
2	Long-term stability of uranium-oxide-based microparticle reference materials: Shelf-life in alcoholic suspension and storage media. MRS Advances, 2022, 7, 134-139.	0.9	3
3	Caesium and iodine release from spent mixed oxide fuels under repository relevant conditions: Initial leaching results. MRS Advances, 2022, 7, 100-104.	0.9	3
4	A Lab on a Chip Experiment for Upscaling Diffusivity of Evolving Porous Media. Energies, 2022, 15, 2160.	3.1	6
5	Thermodiffusion of ions in nanoconfined aqueous electrolytes. Journal of Colloid and Interface Science, 2022, 619, 331-338.	9.4	6
6	Monazite-Type SmPO4 as Potential Nuclear Waste Form: Insights into Radiation Effects from Ion-Beam Irradiation and Atomistic Simulations. Materials, 2022, 15, 3434.	2.9	4
7	Chemical and structural investigations on uranium oxide-based microparticles as reference materials for analytical measurements. MRS Advances, 2021, 6, 125-130.	0.9	9
8	Dissolution Kinetics of International Simple Glass and Formation of Secondary Phases at Very High Surface Area to Solution Ratio in Young Cement Water. Materials, 2021, 14, 1254.	2.9	9
9	Gamma and pulsed electron radiolysis studies of CyMe4BTBP and CyMe4BTPhen: Identification of radiolysis products and effects on the hydrometallurgical separation of trivalent actinides and lanthanides. Radiation Physics and Chemistry, 2021, 189, 109696.	2.8	4
10	Adsorption of barium and radium on montmorillonite: A comparative experimental and modelling study. Applied Geochemistry, 2021, 135, 105117.	3.0	14
11	Chromium Doped UO2-Based Ceramics: Synthesis and Characterization of Model Materials for Modern Nuclear Fuels. Materials, 2021, 14, 6160.	2.9	15
12	Thermodynamic and Structural Modelling of Non-Stoichiometric Ln-Doped UO2 Solid Solutions,Ln = {La, Pr, Nd, Gd}. Frontiers in Chemistry, 2021, 9, 705024.	3.6	8
13	A lab-on-a-chip approach integrating in-situ characterization and reactive transport modelling diagnostics to unravel (Ba,Sr)SO4 oscillatory zoning. Scientific Reports, 2021, 11, 23678.	3.3	11
14	Retention and diffusion of radioactive and toxic species on cementitious systems: Main outcome of the CEBAMA project. Applied Geochemistry, 2020, 112, 104480.	3.0	16
15	Effects of solution supersaturation on barite precipitation in porous media and consequences on permeability: Experiments and modelling. Geochimica Et Cosmochimica Acta, 2020, 270, 43-60.	3.9	26
16	Recrystallization and Uptake of 226Ra into Ba-Rich (Ba,Sr)SO4 Solid Solutions. Minerals (Basel,) Tj ETQq0 0 0 rgl	BT /Overlo	ock ₇ 10 Tf 50 1
17	Uptake and retention of molybdenum in cementitious systems. Applied Geochemistry, 2020, 119, 104630.	3.0	3
18	Upscaling of radionuclide transport and retention in crystalline rocks exhibiting micro-scale heterogeneity of the rock matrix. Advances in Water Resources, 2020, 142, 103644.	3.8	8

#	Article	IF	CITATIONS
19	Microfluidic flow-through reactor and 3D Raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media. Lab on A Chip, 2020, 20, 2562-2571.	6.0	29
20	Combination of MRI and SEM to Assess Changes in the Chemical Properties and Permeability of Porous Media due to Barite Precipitation. Minerals (Basel, Switzerland), 2020, 10, 226.	2.0	16
21	Research for the Safe Management of Nuclear Waste at Forschungszentrum Jülich: Materials Chemistry and Solid Solution Aspects. Advanced Engineering Materials, 2020, 22, 1901417.	3.5	8
22	Modeling of Nuclear Waste Forms: State-of-the-Art and Perspectives. MRS Advances, 2020, 5, 213-222.	0.9	0
23	Insights into the fabrication and structure of plutonium pyrochlores. Journal of Materials Chemistry A, 2020, 8, 2387-2403.	10.3	17
24	Retention of technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste. Applied Geochemistry, 2020, 116, 104580.	3.0	16
25	Organic and inorganic pollutant reduction by Fe(II) in groundwater: surface chemical mechanism and AFM observation., 2020,, 219-220.		0
26	A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces. Chemical Geology, 2019, 528, 119264.	3.3	29
27	Groundwater age dating in fractured rock using <mml:math altimg="si44.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mn>4</mml:mn></mml:msup></mml:mrow><td>1.6</td><td>8</td></mml:math>	1.6	8
28	Elastic and thermal parameters of lanthanide-orthophosphate (LnPO4) ceramics from atomistic simulations. Journal of the European Ceramic Society, 2019, 39, 4264-4274.	5.7	5
29	Rare-Earth Orthophosphates From Atomistic Simulations. Frontiers in Chemistry, 2019, 7, 197.	3.6	14
30	Structural characterisation of metastable Tb- and Dy-monazites. Journal of Solid State Chemistry, 2019, 273, 45-52.	2.9	10
31	Structural and thermodynamic mixing properties of <mml:math altimg="si0145.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ml:mn>1<	/mml:mn> <n< td=""></n<>
32	Transport of oxygen into granitic rocks: Role of physical and mineralogical heterogeneity. Journal of Contaminant Hydrology, 2019, 220, 108-118.	3.3	7
33	Dissolution kinetics of synthetic LaPO4-monazite in acidic media. MRS Advances, 2018, 3, 1133-1137.	0.9	6
34	Structural characterization of (Sm,Tb)PO4 solid solutions and pressure-induced phase transitions. Journal of the European Ceramic Society, 2018, 38, 4070-4081.	5.7	18
35	Microparticle production as reference materials for particle analysis methods in safeguards. MRS Advances, 2018, 3, 1005-1012.	0.9	8
36	Unexpected Behavior of Np in Oxo-selenate/Oxo-selenite Systems. Inorganic Chemistry, 2018, 57, 1604-1613.	4.0	7

#	Article	IF	Citations
37	Hydrothermal Synthesis, Study, and Classification of Microporous Uranium Silicates and Germanates. Inorganic Chemistry, 2018, 57, 4745-4756.	4.0	17
38	Thermodynamics of the solid solution - Aqueous solution system (Ba,Sr,Ra)SO4 + H2O: II. Radium retention in barite-type minerals at elevated temperatures. Applied Geochemistry, 2018, 93, 190-208.	3.0	29
39	Synthesis and Study of the First Zeolitic Uranium Borate. Crystal Growth and Design, 2018, 18, 498-505.	3.0	15
40	Zr-containing layered double hydroxides: Synthesis, characterization, and evaluation of thermodynamic properties. Applied Clay Science, 2018, 151, 54-65.	5.2	33
41	Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. Journal of the European Ceramic Society, 2018, 38, 227-234.	5 . 7	25
42	The Effect of Ionic Strength and Sraq upon the Uptake of Ra during the Recrystallization of Barite. Minerals (Basel, Switzerland), 2018, 8, 502.	2.0	12
43	Assessment of the release behaviour of 14C from irradiated nuclear graphite from a German research reactor. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 2291-2296.	1.5	0
44	The solid solution–aqueous solution system (Sr,Ba,Ra)SO4 + H2O: A combined experimental and theoretical study of phase equilibria at Sr-rich compositions. Chemical Geology, 2018, 497, 1-17.	3.3	23
45	Comparison of Uranium(VI) and Thorium(IV) Silicates Synthesized via Mixed Fluxes Techniques. Inorganic Chemistry, 2018, 57, 6734-6745.	4.0	12
46	Simulating Oxygen Intrusion into Highly Heterogeneous Fractured Media Using High Performance Computing. Mathematical Geosciences, 2018, 50, 549-567.	2.4	3
47	Influence of temperature on the dissolution kinetics of synthetic LaPO4-monazite in acidic media between 50 and 130â€Â°C. Journal of Nuclear Materials, 2018, 509, 488-495.	2.7	18
48	Uptake of 226Ra in cementitious systems: A complementary solution chemistry and atomistic simulation study. Applied Geochemistry, 2018, 96, 204-216.	3.0	19
49	Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides. Journal of Nuclear Materials, 2018, 505, 94-104.	2.7	4
50	Thermodynamics of the solid solution - Aqueous solution system (Ba,Sr,Ra)SO4 + H2O: I. The effect of strontium content on radium uptake by barite. Applied Geochemistry, 2018, 89, 59-74.	3.0	45
51	Probing structural homogeneity of La $1-x$ Gd x PO 4 monazite-type solid solutions by combined spectroscopic and computational studies. Journal of Nuclear Materials, 2017, 486, 148-157.	2.7	24
52	Cation-Dependent Structural Evolution in A $<$ sub $>2<$ sub $>4<$ sub $>4<$ sub $>2<$ sub $>4<$ sub >4 sub	3.0	11
53	Thorium Chemistry in Oxo-Tellurium System under Extreme Conditions. Inorganic Chemistry, 2017, 56, 2926-2935.	4.0	8
54	Continuum-based DFN-consistent numerical framework for the simulation of oxygen infiltration into fractured crystalline rocks. Journal of Contaminant Hydrology, 2017, 200, 60-69.	3.3	15

#	Article	IF	Citations
55	A calorimetric investigation of A 2 [(UO 2) 2 (WO 5)O] compounds with A = K, Rb and Cs and calculated phase relations in the K 2 WO 4 -UO 3 -H 2 O and K 2 MoO 4 -K 2 WO 4 -UO 3 -H 2 O systems. Journal of Chemical Thermodynamics, 2017, 112, 23-30.	2.0	3
56	Composition dependent order-disorder transition in Nd Zr1â^'O2â^'0.5 pyrochlores: A combined structural, calorimetric and ab initio modeling study. Acta Materialia, 2017, 125, 166-176.	7.9	30
57	Crystallization processes, compressibility, sinterability and mechanical properties of La-monazite-type ceramics. Journal of the European Ceramic Society, 2017, 37, 1681-1688.	5.7	11
58	Monitoring the microstructural evolution of Nd 2 Zr 2 O 7 pyrochlore during dissolution at 90°C in 4ÂM HCl: Implications regarding the evaluation of the chemical durability. Journal of Nuclear Materials, 2017, 496, 97-108.	2.7	8
59	New insights into phosphate based materials for the immobilisation of actinides. Radiochimica Acta, 2017, 105, 961-984.	1.2	51
60	Divergent Structural Chemistry of Uranyl Borates Obtained from Solid State and Hydrothermal Conditions. Crystal Growth and Design, 2017, 17, 5898-5907.	3.0	15
61	An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 2. Flowsheet Test with Actinide-spiked Simulant. Solvent Extraction and Ion Exchange, 2017, 35, 396-407.	2.0	25
62	Porous Uranyl Borophosphates with Unique Three-Dimensional Open-Framework Structures. Inorganic Chemistry, 2017, 56, 9311-9320.	4.0	27
63	Heat capacities of xenotime-type ceramics: An accurate ab initio prediction. Journal of Nuclear Materials, 2017, 494, 172-181.	2.7	15
64	Retention of 226Ra by barite: The role of internal porosity. Chemical Geology, 2017, 466, 722-732.	3.3	26
65	Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock. Journal of Contaminant Hydrology, 2017, 207, 8-16.	3.3	13
66	Direct Selective Extraction of Trivalent Americium from PUREX Raffinate Using a Combination of CyMe ₄ BTPhen and TEDGAâ€"A Feasibility Study. Solvent Extraction and Ion Exchange, 2017, 35, 161-173.	2.0	27
67	Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study. Journal of Nuclear Materials, 2017, 493, 404-411.	2.7	24
68	Simulation of ceramic materials relevant for nuclear waste management: Case of La1â^'Eu PO4 solid solution. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 68-72.	1.4	18
69	Thermochemistry of La1â^'xLnxPO4-monazites (Ln= Gd, Eu). Journal of Chemical Thermodynamics, 2017, 105, 396-403.	2.0	39
70	Implications of Grain-Scale Mineralogical Heterogeneity for Radionuclide Transport in Fractured Media. Transport in Porous Media, 2017, 116, 73-90.	2.6	14
71	Gamma Radiolysis of the Highly Selective Ligands CyMe4BTBP and CyMe4BTPhen: Qualitative and Quantitative Investigation of Radiolysis Products. Procedia Chemistry, 2016, 21, 32-37.	0.7	15
72	The Stability of Uranium Microspheres for Future Application as Reference Standard in Analytical Measurements. Procedia Chemistry, 2016, 21, 285-292.	0.7	6

#	Article	IF	CITATIONS
73	Rich Non-centrosymmetry in a Na–U–Te Oxo-System Achieved under Extreme Conditions. Inorganic Chemistry, 2016, 55, 4626-4635.	4.0	11
74	Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO 4. Hyperfine Interactions, 2016, 237, 1.	0.5	2
75	Determination of the Solubility of Rhabdophanes LnPO $<$ sub $>$ 4 $<$ /sub $>$ Â \cdot 0.667H $<$ sub $>$ 2 $<$ /sub $>$ O (Ln = La to) Tj ET	Qq1 1 0.7 2.0	'84314 rgB 47
76	Nonstoichiometry in Strontium Uranium Oxide: Understanding the Rhombohedral–Orthorhombic Transition in SrUO ₄ . Inorganic Chemistry, 2016, 55, 9329-9334.	4.0	22
77	Investigation of reactivity and structure formation in a K–Te–U oxo-system under high-temperature/high-pressure conditions. Dalton Transactions, 2016, 45, 15225-15235.	3.3	7
78	The effect of the synthesis route of monazite precursors on the microstructure of sintered pellets. Progress in Nuclear Energy, 2016, 92, 298-305.	2.9	17
79	Influence of Synthetic Conditions on Chemistry and Structural Properties of Alkaline Earth Uranyl Borates. Crystal Growth and Design, 2016, 16, 5923-5931.	3.0	20
80	Determination of Bandwidths of PWR-UO2Spent Fuel Radionuclide Inventory Based on Real Operational History Data. IEEE Transactions on Nuclear Science, 2016, 63, 2331-2335.	2.0	2
81	Giant Volume Change and Topological Gaps in Temperature―and Pressure―nduced Phase Transitions: Experimental and Computational Study of ThMo ₂ O ₈ . Chemistry - A European Journal, 2016, 22, 946-958.	3.3	8
82	Nano-structural features of barite crystals observed by electron microscopy and atom probe tomography. Chemical Geology, 2016, 424, 51-59.	3.3	33
83	Solvent Extraction and Fluorescence Spectroscopic Investigation of the Selective Am(III) Complexation with TS-BTPhen. Solvent Extraction and Ion Exchange, 2016, 34, 126-140.	2.0	41
84	Probing disorder in isometric pyrochlore and related complex oxides. Nature Materials, 2016, 15, 507-511.	27.5	164
85	The structural effects of alkaline- and rare-earth element incorporation into thorium molybdates. CrystEngComm, 2016, 18, 113-122.	2.6	6
86	Determination of uncertainties of PWR spent fuel radionuclide inventory based on real operational history data., $2015, \dots$		0
87	A general and Eu specific perspective on lattice dynamics in pyrochlore and defect fluorite (EuNd)ZrO. Physica Status Solidi (B): Basic Research, 2015, 252, 1940-1645.	1.5	1
88	Dinuclear Faceâ€Sharing Biâ€octahedral Tungsten(VI) Core and Unusual Thermal Behavior in Complex Th Tungstates. Chemistry - A European Journal, 2015, 21, 7746-7754.	3.3	12
89	Spent UO ₂ TRISO coated particles – instant release fraction and microstructure evolution. Radiochimica Acta, 2015, 103, 433-442.	1.2	4
90	Preparation, characterization and thermodynamic properties of Zr-containing Cl-bearing layered double hydroxides (LDHs). Radiochimica Acta, 2015, 103, 369-378.	1.2	7

#	Article	IF	CITATIONS
91	Thermodynamics of formation of coffinite, USiO ₄ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6551-6555.	7.1	72
92	Effects of Te(IV) Oxo-Anion Incorporation into Thorium Molybdates and Tungstates. Inorganic Chemistry, 2015, 54, 5981-5990.	4.0	13
93	Further Insight into Uranium and Thorium Metaphosphate Chemistry and the Effect of Nd ³⁺ Incorporation into Uranium(IV) Metaphosphate. European Journal of Inorganic Chemistry, 2015, 2015, 1562-1568.	2.0	11
94	Defect formation energies in A 2 B 2 O 7 pyrochlores. Scripta Materialia, 2015, 107, 18-21.	5.2	77
95	A calorimetric and thermodynamic investigation of A2[(UO2)2(MoO4)O2] compounds with A=K and Rb and calculated phase relations in the system (K2MoO4+UO3+H2O). Journal of Chemical Thermodynamics, 2015, 90, 270-276.	2.0	4
96	Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17857-17865.	8.0	48
97	From Two-Dimensional Layers to Three-Dimensional Frameworks: Expanding the Structural Diversity of Uranyl Compounds by Cation–Cation Interactions. Crystal Growth and Design, 2015, 15, 3775-3784.	3.0	21
98	Replacement of barite by a (Ba,Ra)SO4 solid solution at close-to-equilibrium conditions: A combined experimental and theoretical study. Geochimica Et Cosmochimica Acta, 2015, 155, 1-15.	3.9	60
99	Heat capacities of lanthanide and actinide monazite-type ceramics. Journal of Nuclear Materials, 2015, 464, 147-154.	2.7	34
100	Chemical and Structural Evolution in the Thâ€"SeO ₃ 3 ^{2â€"} /SeO ₄ ^{2â€"} System: from Simple Selenites to Cluster-Based Selenate Compounds. Inorganic Chemistry, 2015, 54, 3022-3030.	4.0	27
101	Hyperfine interactions in and lattice parameters of pyrochlore and defect fluorite <mml:math altimg="si0008.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi>Eu</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>4.0 mn>1<td>4 nl:mn><mn< td=""></mn<></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>	4.0 mn>1 <td>4 nl:mn><mn< td=""></mn<></td>	4 nl:mn> <mn< td=""></mn<>
102	Laboratory-Scale Counter-Current Centrifugal Contactor Demonstration of an Innovative-SANEX Process Using a Water Soluble BTP. Solvent Extraction and Ion Exchange, 2015, 33, 91-108.	2.0	87
103	Dissolution of ZrO2 based pyrochlores in the acid pH range: A macroscopic and electron microscopy study. Applied Geochemistry, 2014, 49, 31-41.	3.0	25
104	Energetics of metastudtite and implications for nuclear waste alteration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17737-17742.	7.1	61
105	Morphotropy and Temperature-Driven Polymorphism in A2Th(AsO4)2 (A = Li, Na, K, Rb, Cs) Series. Inorganic Chemistry, 2014, 53, 11231-11241.	4.0	17
106	Evaluation of the long-term behavior of potential plutonium waste forms in a geological repository. Materials Research Society Symposia Proceedings, 2014, 1665, 23-30.	0.1	4
107	Research reactor fuel element corrosion under repository relevant conditions: separation, identification, and quantification of secondary alteration phases of UAl _{<i>x</i>} -Al in MgCl ₂ -rich brine. Radiochimica Acta, 2014, 102, 311-324.	1.2	6
108	Studies on thermal and mechanical properties of monazite-type ceramics for the conditioning of minor actinides. Progress in Nuclear Energy, 2014, 72, 144-148.	2.9	34

#	Article	IF	CITATIONS
109	Synthesis and dissolution kinetics of zirconia based ceramics. Progress in Nuclear Energy, 2014, 72, 130-133.	2.9	12
110	Development and demonstration of innovative partitioning processes (i-SANEX and 1-cycle SANEX) for actinide partitioning. Progress in Nuclear Energy, 2014, 72, 107-114.	2.9	57
111	Raman and infrared spectroscopy of monazite-type ceramics used for nuclear waste conditioning. Progress in Nuclear Energy, 2014, 72, 149-155.	2.9	59
112	Modified Diglycolamides for the An(III) + Ln(III) Co-separation: Evaluation by Solvent Extraction and Time-Resolved Laser Fluorescence Spectroscopy. Solvent Extraction and Ion Exchange, 2014, 32, 119-137.	2.0	56
113	Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering. Applied Geochemistry, 2014, 45, 158-190.	3.0	90
114	Performance of DFT+ <i>U</i> method for prediction of structural and thermodynamic parameters of monaziteâ€type ceramics. Journal of Computational Chemistry, 2014, 35, 1339-1346.	3.3	53
115	Conditioning of minor actinides in lanthanum monazite ceramics: AÂsurrogate study with Europium. Progress in Nuclear Energy 2014, 72, 140-143 Ab initio calculation of excess properties of minil:math	2.9	43
116	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0020.gif" overflow="scroll"> <mml:msub><mml:mrow><mml:mi>La</mml:mi></mml:mrow><mml:mrow><mml:mn>1(<mml:mi mathvariant="italic">Ln</mml:mi><mml:mo>,</mml:mo><mml:mi) etq<="" td="" tj=""><td>nl:mn><m q@@0 rg</m </td><td>ml:mo>â^'BT<i>\$</i>0verlock</td></mml:mi)></mml:mn></mml:mrow></mml:msub>	nl:mn> <m q@@0 rg</m 	ml:mo>â^'BT <i>\$</i> 0verlock
117	Sol High-Pressure Phase Transition of Coffinite, USiO ₄ . Journal of Physical Chemistry C, 2014, 118, 25141-25149.	3.1	14
118	High-Temperature Phase Transitions, Spectroscopic Properties, and Dimensionality Reduction in Rubidium Thorium Molybdate Family. Inorganic Chemistry, 2014, 53, 3088-3098.	4.0	22
119	Uptake of Ra during the Recrystallization of Barite: A Microscopic and Time of Flight-Secondary Ion Mass Spectrometry Study. Environmental Science & E	10.0	41
120	Th(As ^{III} ₄ As ^V ₄ O ₁₈): a Mixed-Valent Oxoarsenic(III)/arsenic(V) Actinide Compound Obtained under Extreme Conditions. Inorganic Chemistry, 2014, 53, 8194-8196.	4.0	15
121	Synthesis of Coffinite, USiO ₄ , and Structural Investigations of U _{<i>x</i>} Th _(1–<i>x</i>) SiO ₄ Solid Solutions. Environmental Science & Environmental Scie	10.0	36
122	Thermodynamic properties and behaviour of A2[(UO2)(MoO4)2] compounds with A=Li, Na, K, Rb, and Cs. Journal of Chemical Thermodynamics, 2014, 79, 205-214.	2.0	7
123	Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)]. Journal of Solid State Chemistry, 2014, 215, 152-159.	2.9	6
124	Highly Distorted Uranyl Ion Coordination and One/Two-Dimensional Structural Relationship in the Ba2[UO2($TO4$)2] ($T=P$, As) System: An Experimental and Computational Study. Inorganic Chemistry, 2014, 53, 7650-7660.	4.0	18
125	A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite. Geochimica Et Cosmochimica Acta, 2014, 134, 16-38.	3.9	46
126	Unexpected Structural Complexity in Cesium Thorium Molybdates. Crystal Growth and Design, 2014, 14, 2677-2684.	3.0	17

#	Article	IF	Citations
127	Characterization of uranium neodymium oxide microspheres synthesized by internal gelation. Progress in Nuclear Energy, 2014, 72, 17-21.	2.9	21
128	TRLFS of Eu3+ and Cm3+ doped La2Zr2O7: A comparison of defect fluorite to pyrochlore structures. Journal of Nuclear Materials, 2013, 433, 479-485.	2.7	25
129	Monazite as a suitable actinide waste form. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 113-123.	0.8	68
130	Solid–aqueous equilibrium in the BaSO4–RaSO4–H2O system: First-principles calculations and a thermodynamic assessment. Geochimica Et Cosmochimica Acta, 2013, 122, 398-417.	3.9	48
131	High Structural Complexity of Potassium Uranyl Borates Derived from High-Temperature/High-Pressure Reactions. Inorganic Chemistry, 2013, 52, 5110-5118.	4.0	32
132	Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy. Dalton Transactions, 2013, 42, 8387.	3.3	17
133	Novel Fundamental Building Blocks and Site Dependent Isomorphism in the First Actinide Borophosphates. Inorganic Chemistry, 2013, 52, 7881-7888.	4.0	10
134	Preparation and Characterization of Fe-, Co-, and Ni-containing Mg-Al-Layered Double Hydroxides. Clays and Clay Minerals, 2013, 61, 424-439.	1.3	16
135	Synthesis, characterization and stability properties of Cl-bearing hydrotalcite-pyroaurite solids. Radiochimica Acta, 2013, 101, 101-110.	1.2	5
136	Site-selective time resolved laser fluorescence spectroscopy of Eu and Cm doped LaPO ₄ . Radiochimica Acta, 2012, 100, 189-195.	1.2	14
137	Durability of potential plutonium wasteforms under repository conditions. Mineralogical Magazine, 2012, 76, 2911-2918.	1.4	20
138	Heterogeneous formation of ferric oxide nanoparticles on chlorite surfaces studied by x-ray absorption spectromicroscopy (STXM). Chemical Geology, 2012, 329, 42-52.	3.3	11
139	Selenide Retention by Mackinawite. Environmental Science & Technology, 2012, 46, 10004-10011.	10.0	18
140	Physical properties and leaching behaviour of spent fuel BISO coated particles. Progress in Nuclear Energy, 2012, 57, 161-164.	2.9	2
141	Fabrication of oxidic uranium-neodymium microspheres by internal gelation. Progress in Nuclear Energy, 2012, 57, 106-110.	2.9	11
142	Formation of a ternary neptunyl(V) biscarbonato inner-sphere sorption complex inhibits calcite growth rate. Journal of Contaminant Hydrology, 2011, 124, 50-56.	3.3	14
143	Radionuclide release from research reactor spent fuel. Journal of Nuclear Materials, 2011, 416, 211-215.	2.7	10
144	Structure and reactivity of the calcite–water interface. Journal of Colloid and Interface Science, 2011, 354, 843-857.	9.4	249

#	Article	IF	Citations
145	High level nuclear waste glass corrosion in synthetic clay pore solution and retention of actinides in secondary phases. Journal of Nuclear Materials, 2009, 385, 456-460.	2.7	16
146	Sites of Lu(III) Sorbed to and Coprecipitated with Hectorite. Environmental Science & Environmental Sc	10.0	22
147	Site-selective time-resolved laser fluorescence spectroscopy of Eu3+ in calcite. Journal of Colloid and Interface Science, 2008, 321, 323-331.	9.4	55
148	TRLFS characterization of Eu(III)-doped synthetic organo-hectorite. Journal of Contaminant Hydrology, 2008, 102, 253-262.	3.3	10
149	Neptunium(V) adsorption to calcite. Journal of Contaminant Hydrology, 2008, 102, 246-252.	3.3	28
150	Radiogeochemical aspects of nuclear waste disposal. Preface. Journal of Contaminant Hydrology, 2008, 102, 173.	3.3	0
151	Incorporation of trivalent actinides into calcite: A time resolved laser fluorescence spectroscopy (TRLFS) study. Geochimica Et Cosmochimica Acta, 2008, 72, 464-474.	3.9	34
152	Reactions of the feldspar surface with metal ions: Sorption of Pb(II), U(VI) and Np(V), and surface analytical studies of reaction with Pb(II) and U(VI). Geochimica Et Cosmochimica Acta, 2008, 72, 288-297.	3.9	33
153	Subsolidus phase relations in Ca2Mo2O8–NaEuMo2O8-powellite solid solution predicted from static lattice energy calculations and Monte Carlo simulations. Physical Chemistry Chemical Physics, 2008, 10, 3509.	2.8	19
154	Neptunium(V) Coprecipitation with Calcite. Environmental Science & Environment	10.0	56
155	Structural incorporation of Cm(III) in trioctahedral smectite hectorite: A time-resolved laser fluorescence spectroscopy (TRLFS) study. Geochimica Et Cosmochimica Acta, 2007, 71, 145-154.	3.9	20
156	Thermodynamic properties and crystal growth behavior of the hashemite (BaSO4–BaCrO4) solid solution. Chemical Geology, 2006, 225, 244-255.	3.3	13
157	Eu(III) coprecipitation with the trioctahedral clay mineral, hectorite. Clays and Clay Minerals, 2006, 54, 45-53.	1.3	25
158	Sorption of Cm(III) onto different Feldspar surfaces: a TRLFS study. Radiochimica Acta, 2006, 94, 243-248.	1.2	29
159	Polarization Dependent Grazing Incidence GI XAFS Measurements of Uranyl Cation Sorption onto Mineral Surfaces. Physica Scripta, 2005, , 877.	2.5	11
160	Time-resolved monitoring of cement hydration: Influence of cellulose ethers on hydration kinetics. Nuclear Instruments & Methods in Physics Research B, 2005, 238, 102-106.	1.4	41
161	Do clay mineral dissolution rates reach steady state?. Geochimica Et Cosmochimica Acta, 2005, 69, 1997-2006.	3.9	90
162	Towards the establishment of a reliable proxy for the reactive surface area of smectite. Geochimica Et Cosmochimica Acta, 2005, 69, 2581-2591.	3.9	78

#	Article	IF	Citations
163	Trivalent actinide coprecipitation with powellite (CaMoO4): Secondary solid solution formation during HLW borosilicate-glass dissolution. Radiochimica Acta, 2004, 92, 639-643.	1.2	33
164	An atomic force microscopy and molecular simulations study of the inhibition of barite growth by phosphonates. Surface Science, 2004, 553, 61-74.	1.9	48
165	Formation of secondary Fe-oxyhydroxide phases during the dissolution of chlorite – effects on uranium sorption. Applied Geochemistry, 2004, 19, 1403-1412.	3.0	46
166	Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach. Geochimica Et Cosmochimica Acta, 2003, 67, 1451-1461.	3.9	188
167	Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. American Mineralogist, 2003, 88, 1989-1995.	1.9	150
168	Selective attachment of monovalent background electrolyte ions and growth inhibitors to polar steps on sulfates as studied by molecular simulations and AFM observations. Molecular Simulation, 2002, 28, 607-632.	2.0	37
169	Formation of secondary phases after long-term corrosion of simulated HLW glass in brine solutions at 190 °C. Radiochimica Acta, 2002, 90, 529-535.	1.2	10
170	Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate. Environmental Science & Environmental Scienc	10.0	294
171	The rational design, synthesis and demonstration of the recognition and binding of a diaza-dioxa-12-crown-4 diphosphonate macrocycle to all crystal growth faces of barium sulfate. Perkin Transactions II RSC, 2002, , 1238-1245.	1.1	19
172	Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology, 2002, 190, 303-319.	3.3	95
173	The Rational Design, Synthesis and Demonstration of the Recognition and Binding of a Diazaâ€Dioxaâ€12â€crownâ€4 Diphosphonate Macrocycle (I) to All Crystal Growth Faces of Barium Sulfate ChemInform, 2002, 33, 173-173.	0.0	0
174	Lowâ€temperature phase decomposition in ironâ€nickel metal of the Portales Valley meteorite. Meteoritics and Planetary Science, 2001, 36, 587-595.	1.6	12
175	Structure of Barite (001)â° and (210)â° Water Interfaces. Journal of Physical Chemistry B, 2001, 105, 8112-8119.	2.6	71
176	Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191, 201-214.	4.7	89
177	Bassanite (CaSO4·0.5H2O) dissolution and gypsum (CaSO4·2H2O) precipitation in the presence of cellulose ethers. Journal of Crystal Growth, 2001, 233, 837-845.	1.5	39
178	In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 2001, 86, 411-423.	1.9	136
179	Ferroelastic orientation states and domain walls in lead phosphate type crystals. Mineralogical Magazine, 2000, 64, 233-239.	1.4	17
180	The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy. American Mineralogist, 2000, 85, 1209-1216.	1.9	87

#	Article	IF	Citations
181	Ferroelastic domains in lead phosphate-arsenate: An afm, X-ray diffraction, tem and Raman study. Phase Transitions, 2000, 71, 243-270.	1.3	8
182	Kink Dynamics and Step Growth on Barium Sulfate (001):Â A Hydrothermal Scanning Probe Microscopy Study. Journal of Physical Chemistry B, 2000, 104, 6978-6982.	2.6	53
183	Using in Vitro Iron Deposition on Asbestos To Model Asbestos Bodies Formed in Human Lung. Chemical Research in Toxicology, 2000, 13, 913-921.	3.3	15
184	Methods for Performing Atomic Force Microscopy Imaging of Clay Minerals in Aqueous Solutions. Clays and Clay Minerals, 1999, 47, 573-581.	1.3	54
185	Mineral Surface Science: Principles, Applications and Case Studies., 1999,, 595-628.		2
186	Microtopography of the barite (001) face during growth:. Journal of Crystal Growth, 1998, 187, 119-125.	1.5	57
187	Molecular-scale mechanisms of crystal growth in barite. Nature, 1998, 395, 483-486.	27.8	211
188	Mineral precipitation and dissolution in aqueous solution: in-situ microscopic observations on barite (001) with atomic force microscopy. Chemical Geology, 1998, 151, 143-160.	3.3	111
189	The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chemical Geology, 1998, 151, 215-233.	3.3	243
190	Microtopography of high-calcium fly ash particle surfaces. Advances in Cement Research, 1998, 10, 17-23.	1.6	16
191	An AFM study on ferroelastic domains in lead phosphate,. Journal of Physics Condensed Matter, 1997, 9, 8397-8405.	1.8	17
192	Gypsum growth in the presence of background electrolytes studied by Scanning Force Microscopy. Geochimica Et Cosmochimica Acta, 1996, 60, 3295-3304.	3.9	54
193	Gypsum growth in the presence of growth inhibitors: a scanning force microscopy study. Chemical Geology, 1996, 132, 227-236.	3.3	79
194	Crystal growth and dissolution kinetics of gypsum and fluorite: An in situ Scanning Force Microscope study. European Journal of Mineralogy, 1995, 7, 267-276.	1.3	40
195	In situ investigation of growth and dissolution on the (010) surface of gypsum by Scanning Force Microscopy. Geochimica Et Cosmochimica Acta, 1994, 58, 843-849.	3.9	113
196	Determination of UV-laser induced surface structures by atomic force microscopy. Applied Surface Science, 1993, 69, 418-423.	6.1	5
197	Surface reconstruction of UV-laser irradiated poly(ethylene terephthalate) by atomic force microscopy. Applied Surface Science, 1992, 59, 267-271.	6.1	6
198	Surface manipulation on layered organic crystals by scanning force microscopy. Ultramicroscopy, 1992, 42-44, 973-976.	1.9	4

#	Article	IF	CITATIONS
199	Magmatic and metamorphic evolution of metagabbros in the $M\tilde{A}^{1/4}$ nchberg Massif, N.E. Bavaria. Contributions To Mineralogy and Petrology, 1991, 107, 112-123.	3.1	18
200	Synthesis and Properties of Reaction-Bonded SiC Ceramic with Embedded UO ₂ -TRISO Coated Particles. Advances in Science and Technology, 0, , .	0.2	2
201	Combining innovative experimental approaches and cross-scale reactive transport modelling for assessing coupled hydrogeochemical processes at interfaces in deep geological repositories for radioactive waste., 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0		O
202	Deciphering porosity clogging at barrier interfaces in deep geological repositories for radioactive waste., 0, 1, 181-182.		0