Zh He, Z He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5314601/publications.pdf

Version: 2024-02-01

92 papers	9,902 citations	47006 47 h-index	88 g-index
93	93	93	10275
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	4.9	107
2	NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature, 2022, 601, 245-251.	27.8	66
3	An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg8723.	10.3	35
4	Growth–defense trade-offs in plants. Current Biology, 2022, 32, R634-R639.	3.9	117
5	A combined approach to evaluate total phosphorus/inorganic phosphate levels in plants. STAR Protocols, 2022, 3, 101456.	1.2	1
6	An SHR–SCR module specifies legume cortical cell fate to enable nodulation. Nature, 2021, 589, 586-590.	27.8	97
7	A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nature Genetics, 2021, 53, 906-915.	21.4	55
8	Genome sequencing of the bacterial blight pathogen DY89031 reveals its diverse virulence and origins of Xanthomonas oryzae pv. oryzae strains. Science China Life Sciences, 2021, 64, 2175-2185.	4.9	7
9	Roles of small RNAs in crop disease resistance. Stress Biology, 2021, 1, 1.	3.1	8
10	NADase and now Ca2+ channel, what else to learn about plant NLRs?. Stress Biology, 2021, 1, 1.	3.1	1
11	Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 2021, 184, 5391-5404.e17.	28.9	117
12	Exploration and selection of elite Sd1 alleles for rice design breeding. Molecular Breeding, 2020, 40, 1.	2.1	5
13	Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. Frontiers in Plant Science, 2020, 11, 595603.	3.6	82
14	Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. Annual Review of Plant Biology, 2020, 71, 575-603.	18.7	125
15	Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Molecular Plant, 2020, 13, 1402-1419.	8.3	59
16	Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice, 2020, 13, 63.	4.0	24
17	Elimination of a Retrotransposon for Quenching Genome Instability in Modern Rice. Molecular Plant, 2019, 12, 1395-1407.	8.3	12
18	A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 2019, 12, 1561-1576.	8.3	106

#	Article	IF	CITATIONS
19	Inducible overexpression of Ideal Plant Architecture 1 improves both yield and disease resistance in rice. Nature Plants, 2019, 5, 389-400.	9.3	151
20	A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180308.	4.0	31
21	RRM Transcription Factors Interact with NLRs and Regulate Broad-Spectrum Blast Resistance in Rice. Molecular Cell, 2019, 74, 996-1009.e7.	9.7	69
22	An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research, 2019, 29, 379-390.	12.0	149
23	Rice copine genes <i>Os<scp>BON</scp>1</i> and <i>Os<scp>BON</scp>3</i> function as suppressors of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487.	8.3	27
24	Deep Sequencing Uncovers Rice Long siRNAs and Its Involvement in Immunity Against <i>Rhizoctonia solani</i>). Phytopathology, 2018, 108, 60-69.	2.2	15
25	A Temperature-Sensitive Misfolded bri1-301 Receptor Requires Its Kinase Activity to Promote Growth. Plant Physiology, 2018, 178, 1704-1719.	4.8	26
26	OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. Molecular Plant, 2017, 10, 619-633.	8.3	135
27	Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355, 962-965.	12.6	439
28	A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications, 2017, 8, 14789.	12.8	149
29	Gibberellins. , 2017, , 107-160.		20
30	GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathogens, 2017, 13, e1006724.	4.7	124
31	Disruption of <i>Os<scp>SULTR</scp>3;3</i> reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytologist, 2016, 211, 926-939.	7. 3	72
32	An E3ÂUbiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host and Microbe, 2016, 20, 758-769.	11.0	109
33	The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression. Plant Physiology, 2016, 172, 546-558.	4.8	50
34	Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 2016, 9, 34-45.	8.3	709
35	Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in <i><scp>A</scp>rabidopsis thaliana</i> growth and development. New Phytologist, 2015, 208, 1089-1103.	7. 3	17
36	Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 2015, 06, 267.	3.6	260

#	Article	IF	Citations
37	<i><i><scp>CURVED CHIMERIC PALEA</scp> 1</i> <io>i><scp>EMF</scp>1â€like protein maintains epigenetic repression of <i><scp>O</scp>s<scp>MADS</scp>58</i> <io>i>i> in rice palea development. Plant Journal, 2015, 82, 12-24.</io></io></i>	5.7	38
38	Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Theoretical and Applied Genetics, 2015, 128, 1151-1161.	3.6	35
39	Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnology, 2015, 33, 996-1003.	17.5	171
40	The receptor kinase $\langle i \rangle \langle scp \rangle CERK \langle scp \rangle 1 \langle i \rangle$ has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81, 258-267.	5.7	232
41	A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research, 2014, 24, 130-133.	12.0	168
42	STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice. Journal of Genetics and Genomics, 2014, 41, 539-548.	3.9	30
43	Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice. Theoretical and Applied Genetics, 2014, 127, 1173-1182.	3.6	50
44	Sugar homeostasis mediated by cell wall invertase <scp>GRAIN INCOMPLETE FILLING</scp> 1 (<scp>GRAIN INCOMPLETE FILLING</scp> 1 (scp>GIF1) plays a role in preâ€existing and induced defence in rice. Molecular Plant Pathology, 2014, 15, 161-173.	4.2	67
45	Roles of Plant Hormones and Their Interplay in Rice Immunity. Molecular Plant, 2013, 6, 675-685.	8.3	235
46	Arabidopsis Thylakoid Formation 1 Is a Critical Regulator for Dynamics of PSII–LHCII Complexes in Leaf Senescence and Excess Light. Molecular Plant, 2013, 6, 1673-1691.	8.3	78
47	Control of Rice Embryo Development, Shoot Apical Meristem Maintenance, and Grain Yield by a Novel Cytochrome P450. Molecular Plant, 2013, 6, 1945-1960.	8.3	79
48	BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Science China Life Sciences, 2013, 56, 275-283.	4.9	36
49	Differential Requirement of Oryza sativa RAR1 in Immune Receptor-Mediated Resistance of Rice to Magnaporthe oryzae. Molecules and Cells, 2013, 35, 327-334.	2.6	11
50	Markerâ€free, tissueâ€specific expression of <i>Cry1Ab</i> as a safe transgenic strategy for insect resistance in rice plants. Pest Management Science, 2013, 69, 135-141.	3.4	18
51	Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in <italic>Arabidopsis</italic> . Acta Biochimica Et Biophysica Sinica, 2013, 45, 827-836.	2.0	28
52	Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9171-9176.	7.1	104
53	Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated <i>ABI3</i> activation in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15485-15490.	7.1	442
54	Studies on Innate Immunity in Rice. Scientia Sinica Vitae, 2013, 43, 1016-1029.	0.3	2

#	Article	IF	Citations
55	Gibberellins Modulate Abiotic Stress Tolerance in Plants. Scientia Sinica Vitae, 2013, 43, 1119-1126.	0.3	3
56	A Novel Protein RLS1 with NB–ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice. Molecular Plant, 2012, 5, 205-217.	8.3	68
57	Characterization and Fine Mapping of a Novel Rice Albino Mutant low temperature albino 1. Journal of Genetics and Genomics, 2012, 39, 385-396.	3.9	32
58	Characterization of temperatureâ€sensitive mutants reveals a role for receptorâ€like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development. Plant Journal, 2012, 72, 707-720.	5.7	36
59	Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1192-200.	7.1	697
60	<i>Arabidopsis</i> Acetylâ€Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indoleâ€3â€Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes ^F . Journal of Integrative Plant Biology, 2012, 54, 471-485.	8.5	29
61	The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant Journal, 2012, 71, 763-775.	5.7	140
62	Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Research, 2011, 21, 835-848.	12.0	80
63	Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant Journal, 2011, 67, 342-353.	5.7	93
64	BENT UPPERMOST INTERNODE1 Encodes the Class II Formin FH5 Crucial for Actin Organization and Rice Development Â. Plant Cell, 2011, 23, 661-680.	6.6	98
65	Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evolutionary Biology, 2010, 10, 108.	3.2	44
66	Plasma Membrane Localization and Potential Endocytosis of Constitutively Expressed XA21 Proteins in Transgenic Rice. Molecular Plant, 2010, 3, 917-926.	8.3	38
67	Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Journal of Genetics and Genomics, 2010, 37, 47-55.	3.9	10
68	Map-Based Cloning and Breeding Application of a Broad-Spectrum Resistance Gene Pigm to Rice Blast., 2009, , 161-171.		14
69	Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Research, 2008, 18, 412-421.	12.0	56
70	Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40, 1370-1374.	21.4	706
71	Overview of Rim2/Hipa transposon superfamily: Structure, distribution, transposition and utilization. Progress in Natural Science: Materials International, 2008, 18, 375-379.	4.4	0
72	Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance. Molecular Plant, 2008, 1, 528-537.	8.3	123

#	Article	IF	Citations
73	Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signaling and Behavior, 2008, 3, 537-542.	2.4	25
74	OsRAR1 and OsSGT1 Physically Interact and Function in Rice Basal Disease Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 294-303.	2.6	66
75	Dual Regulation Role of <i>GH3.5</i> in Salicylic Acid and Auxin Signaling during Arabidopsis- <i>Pseudomonas syringae</i> Interaction. Plant Physiology, 2007, 145, 450-464.	4.8	268
76	Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics, 2007, 7, 1529-1539.	2.2	86
77	Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 2007, 5, 313-324.	8.3	350
78	Proteomic Analysis of Rice Plasma Membrane-associated Proteins in Response to Chitooligosaccharide Elicitors. Journal of Integrative Plant Biology, 2007, 49, 863-870.	8.5	14
79	Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology, 2006, 68, 51-60.	2.5	49
80	Physiological and Molecular Features of the Pathosystem <i>Arabidopsis thaliana</i> L.â€ <i>Sclerotinia sclerotiorum</i> Libert. Journal of Integrative Plant Biology, 2006, 48, 44-52.	8.5	21
81	Transiently Expressed Short Hairpin RNA Targeting 126 kDa Protein of Tobacco Mosaic Virus Interferes with Virus Infection. Acta Biochimica Et Biophysica Sinica, 2006, 38, 22-28.	2.0	15
82	A novel ABA-hypersensitive mutant in Arabidopsis defines a genetic locus that confers tolerance to xerothermic stress. Planta, 2006, 224, 889-899.	3.2	14
83	Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theoretical and Applied Genetics, 2006, 113, 705-713.	3.6	130
84	The Rice 14-3-3 Gene Family and its Involvement in Responses to Biotic and Abiotic Stress. DNA Research, 2006, 13, 53-63.	3.4	211
85	ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in Rice. Plant Cell, 2006, 18, 442-456.	6.6	340
86	A Viral Protein Suppresses siRNA-directed Interference in Tobacco Mosaic Virus Infection. Acta Biochimica Et Biophysica Sinica, 2005, 37, 248-253.	2.0	5
87	Alpha-picolinic acid, a fungal toxin and mammal apoptosis-inducing agent, elicits hypersensitive-like response and enhances disease resistance in rice. Cell Research, 2004, 14, 27-33.	12.0	42
88	N-acetylchitooligosaccharides elicit rice defence responses including hypersensitive response-like cell death, oxidative burst and defence gene expression. Physiological and Molecular Plant Pathology, 2004, 64, 263-271.	2.5	39
89	Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research, 2003, 12, 577-586.	2.4	63
90	Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Research, 2000, 9, 223-227.	2.4	54

#	Article	lF	CITATIONS
91	Perception of Brassinosteroids by the Extracellular Domain of the Receptor Kinase BRI1. Science, 2000, 288, 2360-2363.	12.6	439
92	Molecular cloning of differentially expressed novel rice genes induced by Magnaporthe grisea. Science Bulletin, 1997, 42, 1748-1750.	1.7	2