Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5313836/publications.pdf

Version: 2024-02-01

167 8,619 48 84 papers citations h-index g-index

194 194 194 5978 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fluorine-containing drugs approved by the FDA in 2021. Chinese Chemical Letters, 2023, 34, 107578.	9.0	67
2	A three-component iodine-catalyzed oxidative coupling reaction: a heterodifunctionalization of 3-methylindoles. Organic and Biomolecular Chemistry, 2021, 19, 5794-5799.	2.8	2
3	Recyclable fluorous cinchona organocatalysts for asymmetric synthesis of biologically interesting compounds. Chemical Communications, 2021, 57, 10116-10124.	4.1	8
4	Synthesis of tetrahydropyrrolothiazoles through one-pot and four-component N,S-acetalation and decarboxylative [3+2] cycloaddition. Green Synthesis and Catalysis, 2021, 2, 74-77.	6.8	19
5	Diastereoselective synthesis of hexahydropyrrolo[2,1-a]isoquinolines by [3+2] cycloaddition and cyclative Heck alkyne hydroarylation. Tetrahedron Letters, 2021, 67, 152859.	1.4	3
6	Recent Developments on Five-Component Reactions. Molecules, 2021, 26, 1986.	3.8	18
7	Development of Dimethylisoxazole-Attached Imidazo[1,2- <i>a</i>) pyridines as Potent and Selective CBP/P300 Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 5787-5801.	6.4	15
8	Copper-Catalyzed Vicinal Cyano-, Thiocyano-, and Chlorophosphorylation of Alkynes: A Phosphinoyl Radical-Initiated Approach for Difunctionalized Alkenes. Organic Letters, 2021, 23, 4342-4347.	4.6	8
9	Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chinese Chemical Letters, 2021, 32, 3342-3354.	9.0	79
10	One-pot, two-step synthesis of 3,4-dihydroquinazoline-2(1H)-thiones from o-azidobenzenealdehydes, aryl amines and carbon disulfide. Tetrahedron Letters, 2021, 81, 153361.	1.4	2
11	Difluoromethylation of Alkyl Bromides and Iodides with TMSCF ₂ H. Journal of Organic Chemistry, 2021, 86, 2854-2865.	3.2	12
12	Difunctionalization of Alkenes and Alkynes via Intermolecular Radical and Nucleophilic Additions. Molecules, 2021, 26, 105.	3.8	70
13	Pseudo-Five-Component Reaction for Diastereoselective Synthesis of Butterfly Shaped Bispiro[Oxindole-Pyrrolidine]s. Journal of Organic Chemistry, 2021, 86, 17395-17403.	3.2	5
14	Small-Molecule Dual PLK1 and BRD4 Inhibitors are Active Against Preclinical Models of Pediatric Solid Tumors. Translational Oncology, 2020, 13, 221-232.	3.7	20
15	Dehydroxylative Trifluoromethylthiolation, Trifluoromethylation, and Difluoromethylation of Alcohols. Chinese Journal of Chemistry, 2020, 38, 169-172.	4.9	30
16	Sequential decarboxylative [3+2] cycloaddition and Staudinger/aza-Wittig reactions for diastereoselective synthesis of tetrahydro-pyrroloquinazolines and tetrahedro-pyrrolobenzodiazepines. Tetrahedron Letters, 2020, 61, 151392.	1.4	19
17	Oneâ€Pot Mannich, Azaâ€Wittig and Dehydrofluorinative Aromatization Reactions for Direct Synthesis of 2,3â€Disubstituted 4â€Aminoquinolines. Advanced Synthesis and Catalysis, 2020, 362, 5513-5517.	4.3	14
18	Inhibition of Polo-like kinase 1 (PLK1) facilitates the elimination of HIV-1 viral reservoirs in CD4 ⁺ T cells ex vivo. Science Advances, 2020, 6, eaba1941.	10.3	16

#	Article	IF	CITATIONS
19	Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids, 2020, 52, 1227-1261.	2.7	24
20	Synthesis of pyrrolidinedione-fused hexahydropyrrolo $[2,1-\langle i\rangle a\langle i\rangle]$ isoquinolines via three-component $[3+2]$ cycloaddition followed by one-pot $\langle i\rangle N\langle i\rangle$ -allylation and intramolecular Heck reactions. Beilstein Journal of Organic Chemistry, 2020, 16, 1225-1233.	2.2	9
21	Two Ligands Transfer from Ag to Pd: En Route to (SIPr)Pd(CF ₂ H)(X) and Its Application in One-Pot Câ€"H Borylation/Difluoromethylation. Journal of Organic Chemistry, 2020, 85, 3596-3604.	3.2	12
22	Introduction to PASE Synthesis. Springer Briefs in Molecular Science, 2019, , 1-4.	0.1	2
23	Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase. Journal of Medicinal Chemistry, 2019, 62, 7923-7940.	6.4	210
24	One-Pot Reactions. Springer Briefs in Molecular Science, 2019, , 5-13.	0.1	0
25	One-pot synthesis of tetrahydro-pyrrolobenzodiazepines and tetrahydro-pyrrolobenzodiazepinones through sequential 1,3-dipolar cycloaddition/ <i>N</i> -alkylation (<i>N</i> -acylation)/Staudinger/aza-Wittig reactions. Green Chemistry, 2019, 21, 4489-4494.	9.0	24
26	Consecutive multicomponent reactions for the synthesis of complex molecules. Organic and Biomolecular Chemistry, 2019, 17, 7632-7650.	2.8	203
27	Pot, Atom, and Step Economy (PASE) Synthesis. Springer Briefs in Molecular Science, 2019, , .	0.1	31
28	Radical Difunctionalization of Alkenes with Iododifluoromethyl Ketones Under Niâ€Catalysis. ChemCatChem, 2019, 11, 5778-5782.	3.7	16
29	One-pot diastereoselective synthesis of tetrahydroepimino-benzo[b]azocines through sequential [3+2]-cycloaddition and Staudinger-aza-Wittig reactions. Tetrahedron Letters, 2019, 60, 151127.	1.4	6
30	Cascade Knoevenagel and aza-Wittig reactions for the synthesis of substituted quinolines and quinolin-4-ols. Green Chemistry, 2019, 21, 349-354.	9.0	37
31	Double 1,3-Dipolar Cycloadditions of Two Nonstabilized Azomethine Ylides for Polycyclic Pyrrolidines. Organic Letters, 2019, 21, 2176-2179.	4.6	21
32	[3 + 2] Cycloaddition and Cascade Radical Reactions for the Synthesis of Trifluoromethylated Tetrahydrobenzodiazepin-3-ones. Journal of Organic Chemistry, 2019, 84, 5927-5935.	3.2	14
33	One-Pot Synthesis of Triazolobenzodiazepines Through Decarboxylative [3 + 2] Cycloaddition of Nonstabilized Azomethine Ylides and Cu-Free Click Reactions. Molecules, 2019, 24, 601.	3.8	18
34	Recyclable Organocatalyst for Oneâ€Pot Asymmetric Synthesis of Dihydrofuranone and Tetrahydropyranone Spirooxindoles. European Journal of Organic Chemistry, 2019, 2019, 150-155.	2.4	11
35	Applications of PASE Synthesis. Springer Briefs in Molecular Science, 2019, , 41-47.	0.1	0
36	One-Pot Synthesis of Polycyclic Spirooxindoles via Montmorillonite K10-Catalyzed C–H Functionalization of Cyclic Amines. ACS Sustainable Chemistry and Engineering, 2018, 6, 5574-5579.	6.7	36

#	Article	IF	CITATIONS
37	Fluoroalkylsulfonyl Chlorides Promoted Vicinal Chloro-fluoroalkylthiolation of Alkenes and Alkynes. Organic Letters, 2018, 20, 2236-2240.	4.6	53
38	PASE synthesis of pyrrolidine-containing heterocycles through [3+2] cycloaddition-initiated reactions. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 65-69.	5.9	18
39	Phosphinoyl Radical-Initiated 1,2-Bifunctional Thiocyanodiphenylphosphinoylation of Alkenes. Journal of Organic Chemistry, 2018, 83, 2418-2424.	3.2	32
40	Iron-Catalyzed Difluoromethylation of Arylzincs with Difluoromethyl 2-Pyridyl Sulfone. Journal of the American Chemical Society, 2018, 140, 880-883.	13.7	155
41	Trifluoromethanesulfinyl Chloride for Electrophilic Trifluoromethythiolation and Bifunctional Chlorotrifluoromethythiolation. Chemistry - A European Journal, 2018, 24, 18749-18756.	3.3	47
42	One-Pot Double [3 + 2] Cycloadditions for Diastereoselective Synthesis of Pyrrolidine-Based Polycyclic Systems. Journal of Organic Chemistry, 2018, 83, 13536-13542.	3.2	24
43	One-pot Fluorination and Organocatalytic Robinson Annulation for Asymmetric Synthesis of Monoand Difluorinated Cyclohexenones. Molecules, 2018, 23, 2251.	3.8	8
44	One-pot synthesis of dihydroquinazolinethione-based polycyclic system. Tetrahedron Letters, 2018, 59, 3845-3847.	1.4	14
45	Mn(OAc)3-Mediated Regioselective Radical Alkoxycarbonylation of Indoles, Pyrimidinones, and Pyridinones. Synthesis, 2018, 50, 2968-2973.	2.3	6
46	Structure-Guided Design and Development of Potent and Selective Dual Bromodomain 4 (BRD4)/Polo-like Kinase 1 (PLK1) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 7785-7795.	6.4	46
47	Sequential (3 + 2) cycloaddition and (5 + <i>n</i>) annulation for modular synthesis of dihydrobenzoxazines, tetrahydrobenzoxazepines and tetrahydrobenzoxazocines. Green Chemistry, 2018, 20, 3134-3139.	9.0	30
48	Recyclable Organocatalysts for a Oneâ€Pot Asymmetric Synthesis of 2â€Fluorocyclohexanols Bearing Six Contiguous Stereocenters. Advanced Synthesis and Catalysis, 2017, 359, 1919-1926.	4.3	17
49	Metalâ€Free Difluoromethylthiolation, Trifluoromethylthiolation, and Perfluoroalkylthiolation with Sodium Difluoromethane―sulfinate, Sodium Trifluoromethanesulfinate or Sodium Perfluoro―alkanesulfinate. Advanced Synthesis and Catalysis, 2017, 359, 2471-2480.	4.3	60
50	[3+2] Cycloaddition-based one-pot synthesis of 3,9-diazabicyclo[4.2.1]nonane-containing scaffold. Chemistry of Heterocyclic Compounds, 2017, 53, 468-473.	1.2	13
51	Metal-free radical C–H methylation of pyrimidinones and pyridinones with dicumyl peroxide. Green Chemistry, 2017, 19, 919-923.	9.0	35
52	Phosphinoyl Radical Initiated Vicinal Cyanophosphinoylation of Alkenes. Organic Letters, 2017, 19, 5537-5540.	4.6	62
53	Synthesis of trifluoromethylated pyrrolidines via decarboxylative [3+2] cycloaddition of non-stabilized N -unsubstituted azomethine ylides. Journal of Fluorine Chemistry, 2017, 204, 18-22.	1.7	11
54	Phosphinoyl Radical-Initiated $\langle i \rangle \hat{l} \pm , \hat{l}^2 \langle i \rangle$ -Aminophosphinoylation of Alkenes. Organic Letters, 2017, 19, 4704-4706.	4.6	46

#	Article	IF	CITATIONS
55	One-pot and catalyst-free synthesis of pyrroloquinolinediones and quinolinedicarboxylates. Green Chemistry, 2017, 19, 3851-3855.	9.0	37
56	Stereoselective synthesis of fused tetrahydroquinazolines through one-pot double $[3+2]$ dipolar cycloadditions followed by $[5+1]$ annulation. Beilstein Journal of Organic Chemistry, 2016, 12, 2204-2210.	2.2	21
57	2,2â€Difluoroâ€1,3â€diketones as <i>gem</i> li>â€Difluoroenolate Precusors for Asymmetric Aldol Addition with <i>N</i> â€Benzylisatins. Advanced Synthesis and Catalysis, 2016, 358, 2811-2816.	4.3	29
58	Assessment of Bromodomain Target Engagement by a Series of BI2536 Analogues with Miniaturized BET-BRET. ChemMedChem, 2016, 11, 2575-2581.	3.2	17
59	One-Pot Reactions for Modular Synthesis of Polysubstituted and Fused Pyridines. Organic Letters, 2016, 18, 5640-5643.	4.6	71
60	Organocatalytic One-Pot Asymmetric Synthesis of Thiolated Spiro-Î ³ -lactam Oxindoles Bearing Three Stereocenters. Journal of Organic Chemistry, 2016, 81, 5362-5369.	3.2	39
61	A pot-economical and diastereoselective synthesis involving catalyst-free click reaction for fused-triazolobenzodiazepines. Green Chemistry, 2016, 18, 2642-2646.	9.0	52
62	Direct Trifluoromethylthiolation and Perfluoroalkylthiolation of C(sp ²)H Bonds with CF ₃ SO ₂ Na. Angewandte Chemie - International Edition, 2015, 54, 14965-14969.	13.8	164
63	Recyclable Organocatalystâ€Promoted Oneâ€Pot Asymmetric Synthesis of Spirooxindoles Bearing Multiple Stereogenic Centers. Advanced Synthesis and Catalysis, 2015, 357, 3820-3824.	4.3	38
64	Ga(DS)3-catalysed double hydroarylation of acetylenic esters with indoles for the synthesis of bisindolyl propanoates. Tetrahedron Letters, 2015, 56, 3996-3998.	1.4	10
65	Advanced dress-up chiral columns: New removable chiral stationary phases for enantioseparation of chiral carboxylic acids. Analytica Chimica Acta, 2015, 882, 101-111.	5.4	8
66	One-Pot Synthesis of 3,5-Disubstituted and Polysubstituted Phenols from Acyclic Precursors. Organic Letters, 2015, 17, 1090-1093.	4.6	49
67	One-pot fluorination and Mannich reactions of 1,3-dicarbonyl compounds. Tetrahedron Letters, 2015, 56, 1998-2000.	1.4	11
68	Recent advances in sulfur- and phosphorous-centered radical reactions for the formation of Sâ \in "C and Pâ \in "C bonds. Tetrahedron, 2015, 71, 7481-7529.	1.9	152
69	Recyclable organocatalyst-promoted one-pot Michael/aza-Henry/lactamization reactions for fluorinated 2-piperidinones bearing four stereogenic centres. RSC Advances, 2015, 5, 71071-71075.	3.6	16
70	Fluorescent Visualization of Src by Using Dasatinibâ€BODIPY. ChemBioChem, 2014, 15, 1317-1324.	2.6	16
71	Synthesis and uses of fluorous and highly fluorinated macrocyclic and spherical molecules. Journal of Fluorine Chemistry, 2014, 157, 84-105.	1.7	18
72	Recent progress on fluorous synthesis of biologically interesting compounds. Molecular Diversity, 2014, 18, 203-218.	3.9	8

#	Article	IF	CITATIONS
73	Biased Multicomponent Reactions to Develop Novel Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 9019-9027.	6.4	80
74	Manganese(III)-Mediated Selective Diphenylphosphinoyl Radical Reaction of 1,4-Diaryl-1-butynes for the Synthesis of 2-Phosphinoylated 3,4-Dihydronaphathalenes. Journal of Organic Chemistry, 2014, 79, 1850-1855.	3.2	64
75	One-pot fluorination and asymmetric Michael addition promoted by recyclable fluorous organocatalysts. RSC Advances, 2013, 3, 18267.	3.6	29
76	Recyclable gallium(III) triflate-catalyzed [4+3] cycloaddition for synthesis of 2,4-disubstituted-3H-benzo[b][1,4]diazepines. Tetrahedron Letters, 2013, 54, 6178-6180.	1.4	27
77	Recyclable cinchona alkaloid catalyzed asymmetric Michael addition reaction. Tetrahedron Letters, 2013, 54, 6064-6066.	1.4	28
78	Magnetic nanoparticle-supported organocatalysis. Green Processing and Synthesis, 2013, 2, 603-609.	3.4	14
79	Sequential [3 + 2] and [4 + 2] Cycloadditions for Stereoselective Synthesis of a Novel Polyheterocyclic Scaffold. ACS Combinatorial Science, 2013, 15, 350-355.	3.8	24
80	1,3-Dipolar Cycloaddition-based Synthesis of Diverse Heterocyclic Scaffolds. Chemistry Letters, 2013, 42, 676-681.	1.3	47
81	Atom- and step-economic synthesis of biaryl-substituted furocoumarins, furoquinolones and furopyrimidines by multicomponent reactions and one-pot synthesis. Green Processing and Synthesis, 2013, 2, .	3.4	3
82	Polymer-supported Pd(0) catalyst for copper- and ligand-free Sonogashira reactions in aqueous media. Green Processing and Synthesis, 2012, 1 , .	3.4	3
83	Manganese(III) Acetate Mediated Free-Radical Phosphonylation of Flavones and Coumarins. Synthesis, 2012, 44, 1043-1050.	2.3	44
84	One-pot double $[3+2]$ cycloaddition for diastereoselective synthesis of tetracyclic pyrrolidine compounds. Green Chemistry, 2012, 14, 3010.	9.0	45
85	One-pot fluorination followed by Michael addition or Robinson annulation for preparation of $\hat{l}\pm\text{-fluorinated}$ carbonyl compounds. Green Chemistry, 2012, 14, 3185.	9.0	23
86	Leveraging kinase inhibitors to develop small molecule tools for imaging kinases by fluorescence microscopy. Molecular BioSystems, 2012, 8, 2523.	2.9	25
87	Recyclable fluorous cinchona alkaloid ester as a chiral promoter for asymmetric fluorination of β-ketoesters. Beilstein Journal of Organic Chemistry, 2012, 8, 1233-1240.	2.2	24
88	Profile of the "Green Organic and Medicinal Chemistry―research group at the University of Massachusetts Boston. Green Processing and Synthesis, 2012, 1, .	3.4	0
89	Ga(ClO4)3-catalyzed synthesis of quinoxalines by cycloaddition of \hat{l}_{\pm} -hydroxyketones and o-phenylenediamines. Tetrahedron Letters, 2012, 53, 2508-2510.	1.4	43
90	Fluorous benzaldehyde-based synthesis of biaryl-substituted oxazabicyclo[3.3.1]nonanes. Green Chemistry, 2011, 13, 847.	9.0	13

#	Article	IF	CITATIONS
91	Solvent- and catalyst-free synthesis of 2,3-dihydro-1H-benzo[d]imidazoles. Green Chemistry, 2011, 13, 594.	9.0	21
92	Manganese(iii)-mediated phosphinoyl radical reactions for stereoselective synthesis of phosphinoylated tetrahydronaphthalenes. Chemical Communications, 2011, 47, 7875.	4.1	78
93	Synthesis of diverse dihydropyrimidine-related scaffolds by fluorous benzaldehyde-based Biginelli reaction and post-condensation modifications. Beilstein Journal of Organic Chemistry, 2011, 7, 1294-1298.	2.2	19
94	Fluorous Organocatalysis. Topics in Current Chemistry, 2011, 308, 175-190.	4.0	9
95	Convertible Fluorous Sulfonate Linker for the Synthesis of Diverse Library Scaffolds. Journal of the Chinese Chemical Society, 2011, 58, 575-582.	1.4	6
96	Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols. Molecular Diversity, 2011, 15, 849-855.	3.9	5
97	Synthesis of Phosphonylated and Thiolated Indenones by Manganese(III)â€Mediated Addition of Phosphorus―and Sulfurâ€Centered Radicals to 1,3â€Diarylpropynones. European Journal of Organic Chemistry, 2011, 2011, 3412-3415.	2.4	70
98	Convertible Fluorous Linker Assisted Synthesis of Tetrasubstituted Furans. Synlett, 2011, 2011, 1608-1612.	1.8	1
99	Microwave-Assisted Fluorous Multicomponent Reactions – A Combinatorial Chemistry Approach for Green Organic Synthesis. Current Organic Synthesis, 2011, 8, 295-309.	1.3	15
100	Use of Cyclohexylisocyanide and Methyl 2-Isocyanoacetate as Convertible Isocyanides for Microwave-Assisted Fluorous Synthesis of 1,4-Benzodiazepine-2,5-dione Library. ACS Combinatorial Science, 2010, 12, 206-214.	3.3	79
101	Gallium(III) triflate-catalyzed [4+2+1] cycloadditions for the synthesis of novel 3,4-disubstituted-1,5-benzodiazepines. Tetrahedron Letters, 2010, 51, 471-474.	1.4	32
102	Manganese(III)-mediated direct phosphonylation of arenes. Tetrahedron Letters, 2010, 51, 2639-2643.	1.4	72
103	Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2009. ACS Combinatorial Science, 2010, 12, 765-806.	3.3	83
104	Manganese(iii)-mediated direct phosphonation of arylalkenes and arylalkynes. Chemical Communications, 2010, 46, 1721.	4.1	139
105	Fluorous diastereomeric mixture synthesis (FDMS) of hydantoin-fused hexahydrochromeno[4,3-b]pyrroles. Chemical Communications, 2010, 46, 7578.	4.1	23
106	Fluorous Synthesis of Substituted Sclerotigenin Library. ACS Combinatorial Science, 2010, 12, 125-128.	3.3	15
107	Fluorous Lewis acids and phase transfer catalysts. Molecular Diversity, 2009, 13, 209-239.	3.9	14
108	Manganese(III)-promoted reactions for formation of carbon–heteroatom bonds. Molecular Diversity, 2009, 13, 421-438.	3.9	56

#	Article	IF	Citations
109	Selective difluoromethylation and monofluoromethylation reactions. Chemical Communications, 2009, , 7465.	4.1	585
110	Synthesis and Applications of a Light-Fluorous Glycosyl Donor. Journal of Organic Chemistry, 2009, 74, 2594-2597.	3.2	61
111	Arylâ^'Csp3 Bond Rotation Barriers of 2-Aryl Perhydropyrrolo[3,4-c]pyrrole-1,3-diones. Journal of Organic Chemistry, 2009, 74, 5481-5485.	3.2	3
112	Microwave-Assisted Fluorous Synthesis of a 1,4-Benzodiazepine-2,5-dione Library. ACS Combinatorial Science, 2009, 11, 1083-1093.	3.3	38
113	<i>N</i> -Tosyl- <i>S</i> -difluoromethyl- <i>S</i> -phenylsulfoximine: A New Difluoromethylation Reagent for S-, N-, and C-Nucleophiles. Organic Letters, 2009, 11, 2109-2112.	4.6	199
114	Fluorous Parallel Synthesis of a Piperazinedione-Fused Tricyclic Compound Library. ACS Combinatorial Science, 2009, 11, 452-459.	3.3	30
115	Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2008. ACS Combinatorial Science, 2009, 11, 739-790.	3.3	80
116	Fluorous Linker-Facilitated Chemical Synthesis. Chemical Reviews, 2009, 109, 749-795.	47.7	166
117	Green chemistry aspects of fluorous techniques $\hat{a}\in \hat{a}$ opportunities and challenges for small-scale organic synthesis. Green Chemistry, 2009, 11, 911.	9.0	105
118	Fluorocarbon stationary phases for liquid chromatography applications. Journal of Fluorine Chemistry, 2008, 129, 910-919.	1.7	74
119	Ga(OTf)3-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines. Tetrahedron Letters, 2008, 49, 5302-5308.	1.4	91
120	Free radical ring expansion and spirocyclization of 1,3-diketone derivatives. Tetrahedron Letters, 2008, 49, 7311-7314.	1.4	5
121	Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives. Tetrahedron Letters, 2008, 49, 7386-7390.	1.4	129
122	Microwave-Assisted Fluorous Synthesis of 2-Aryl-Substituted 4-Thiazolidinone and 4-Thiazinanone Libraries. ACS Combinatorial Science, 2008, 10, 303-312.	3.3	38
123	New chemical and biological applications of fluorous technologies. Chemical Communications, 2008, , 5686.	4.1	85
124	Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2007. ACS Combinatorial Science, 2008, 10, 753-802.	3.3	98
125	Fluorous-Enhanced Multicomponent Reactions for Making Drug-Like Library Scaffolds. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 219-229.	1.1	35
126	Comprehensive Survey of Chemical Libraries for Drug Discovery and Chemical Biology: 2006. ACS Combinatorial Science, 2007, 9, 855-902.	3.3	78

#	Article	IF	CITATIONS
127	96-Well Plate-to-Plate Gravity Fluorous Solid-Phase Extraction (F-SPE) for Solution-Phase Library Purification. ACS Combinatorial Science, 2007, 9, 836-843.	3.3	26
128	Fluorous and Traceless Synthesis of Substituted Indole Alkaloids. ACS Combinatorial Science, 2007, 9, 951-958.	3.3	18
129	Fluorous synthesis of sclerotigenin-type benzodiazepine–quinazolinones. Tetrahedron Letters, 2007, 48, 563-565.	1.4	37
130	Synthetic applications of fluorous solid-phase extraction (F-SPE). Tetrahedron, 2006, 62, 11837-11865.	1.9	327
131	Automation of Fluorous Solid-Phase Extraction for Parallel Synthesis. ACS Combinatorial Science, 2006, 8, 890-896.	3.3	29
132	Manganese(III) Acetate Promoted Regioselective Phosphonation of Heteroaryl Compounds. Organic Letters, 2006, 8, 5291-5293.	4.6	129
133	Regioselective synthesis of N-acetylureas by manganese (III) acetate reaction of $1,3$ -disubstituted thioureas. Tetrahedron Letters, 2006, 47, 2323-2325.	1.4	22
134	A recyclable fluorous organocatalyst for Diels–Alder reactions. Tetrahedron Letters, 2006, 47, 9287-9290.	1.4	79
135	Fluorous Mixture Synthesis of Two Libraries with Hydantoin-, and Benzodiazepinedione-Fused Heterocyclic Scaffolds. ACS Combinatorial Science, 2006, 8, 687-695.	3.3	54
136	Palladium-catalyzed Buchwald–Hartwig type amination of fluorous arylsulfonates. Journal of Fluorine Chemistry, 2006, 127, 588-591.	1.7	31
137	Fluorous Synthesis of Hydantoin-, Piperazinedione-, and Benzodiazepinedione-Fused Tricyclic and Tetracyclic Ring Systems. European Journal of Organic Chemistry, 2006, 2006, 2055-2059.	2.4	51
138	Fluorous synthesis of biaryl-substituted proline analogs by 1,3-dipolar cycloaddition and Suzuki coupling reactions. Tetrahedron Letters, 2005, 46, 1807-1810.	1.4	48
139	Free radical ring expansion and chain extension of 1,3-diketones. Tetrahedron Letters, 2005, 46, 4727-4729.	1.4	9
140	Fluorous reagents and scavengers versus solid-supported reagents and scavengers, a reaction rate and kinetic comparison. Molecular Diversity, 2005, 9, 353-359.	3.9	20
141	Plate-to-Plate Fluorous Solid-Phase Extraction for Solution-Phase Parallel Synthesis. ACS Combinatorial Science, 2005, 7, 893-897.	3.3	36
142	Synthesis of Fluorous and Nonfluorous Polycyclic Systems by One-Pot, Double Intramolecular 1,3-Dipolar Cycloaddition of Azomethine Ylides. Organic Letters, 2005, 7, 2269-2272.	4.6	59
143	Microwave-assisted Synthesis of a 3-Aminoimidazo [1,2-a]-pyridine/pyrazine Library by Fluorous Multicomponent Reactions and Subsequent Cross-coupling Reactions. QSAR and Combinatorial Science, 2004, 23, 827-835.	1.4	65
144	A traceless perfluorooctylsulfonyl tag for deoxygenation of phenols under microwave irradiation. Tetrahedron Letters, 2004, 45, 4611-4613.	1.4	48

#	Article	IF	Citations
145	Highly efficient microwave-assisted fluorous Ugi and post-condensation reactions for benzimidazoles and quinoxalinones. Tetrahedron Letters, 2004, 45, 6757-6760.	1.4	66
146	A Highly Efficient Microwave-Assisted Suzuki Coupling Reaction of Aryl Perfluorooctylsulfonates with Boronic Acids. Organic Letters, 2004, 6, 1473-1476.	4.6	108
147	Solution-Phase Parallel Synthesis of an N-Alkylated Dihydropteridinone Library from Fluorous Amino Acids. ACS Combinatorial Science, 2004, 6, 942-949.	3.3	24
148	Fluorous Synthesis of Heterocyclic Systems. Chemical Reviews, 2004, 104, 2531-2556.	47.7	224
149	Fluorous mixture synthesis (FMS) of enantiomers, diastereomers, and compound libraries. Arkivoc, 2004, 2004, 101-109.	0.5	33
150	Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides. Current Opinion in Drug Discovery & Development, 2004, 7, 784-97.	1.9	15
151	Microwave-assisted synthesis of a 3-aminoimidazo[1,2-a]-pyridine/pyrazine library by fluorous multicomponent reactions and subsequent cross-coupling reactions. QSAR and Combinatorial Science, 2004, 23, 827-835.	1.4	17
152	Combination of microwave reactions with fluorous separations in the palladium-catalyzed synthesis of aryl sulfides. Molecular Diversity, 2003, 7, 199-202.	3.9	43
153	Fluorous technologies for solution-phase high-throughput organic synthesis. Tetrahedron, 2003, 59, 4475-4489.	1.9	224
154	FluoMar, a Fluorous Version of the Marshall Resin for Solution-Phase Library Synthesis. Organic Letters, 2003, 5, 1015-1017.	4.6	35
155	Fluorous Synthesis of Hydantoins and Thiohydantoins. Organic Letters, 2003, 5, 2555-2558.	4.6	56
156	Fluorous Synthesis of Disubstituted Pyrimidines. Organic Letters, 2003, 5, 1011-1013.	4.6	47
157	Solution-Phase Preparation of a 560-Compound Library of Individual Pure Mappicine Analogues by Fluorous Mixture Synthesis. Journal of the American Chemical Society, 2002, 124, 10443-10450.	13.7	140
158	Use of fluorous silica gel to separate fluorous thiol quenching derivatives in solution-phase parallel synthesis. Tetrahedron, 2002, 58, 3871-3875.	1.9	54
159	Discovery and Development of Cyclobutanone-Based Free Radical Ring Expansion and Annulation Reactions. Current Organic Chemistry, 2002, 6, 1015-1029.	1.6	13
160	Intramolecular free radical conjugate additions. Tetrahedron, 2001, 57, 7237-7262.	1.9	95
161	Intramolecular [2 + 2] cycloaddition and sequential ring expansion. Tetrahedron Letters, 1995, 36, 2729-2732.	1.4	31
162	Free radical-mediated ring expansion and related annulations. Chemical Reviews, 1993, 93, 2091-2115.	47.7	377

WEI ZHANG

#	Article	IF	CITATION
163	Free-radical ring expansion of fused cyclobutanones: stereospecific construction of 5,7-, 6,7-, 7,7-, 8,7-, and 5,8-cis-fused bicyclic systems. Journal of Organic Chemistry, 1992, 57, 7163-7171.	3.2	39
164	Unusual cyclopropane formation following free radical ring expansion. Tetrahedron Letters, 1992, 33, 7307-7310.	1.4	38
165	A new free radical-based method for the synthesis of spiroannulated medium rings. Tetrahedron Letters, 1992, 33, 3285-3288.	1.4	32
166	Free radical ring expansion of fused cyclobutanones: a new ring expansion annulation stratagem. Journal of the American Chemical Society, 1991, 113, 9875-9876.	13.7	51
167	Three-component $[3+2]$ cycloaddition for regio- and diastereoselective synthesis of spirooxindole-pyrrolidines. New Journal of Chemistry, 0 , , .	2.8	7