
Pierrick Poisbeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5310308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GlyR α3: An Essential Target for Spinal PGE ₂ -Mediated Inflammatory Pain Sensitization. Science, 2004, 304, 884-887.	12.6	569
2	A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing. Neuron, 2016, 89, 1291-1304.	8.1	314
3	Region-Specific Developmental Specialization of GABA–Glycine Cosynapses in Laminas l–II of the Rat Spinal Dorsal Horn. Journal of Neuroscience, 2001, 21, 7871-7880.	3.6	206
4	Modulation of Synaptic GABA _A Receptor Function by PKA and PKC in Adult Hippocampal Neurons. Journal of Neuroscience, 1999, 19, 674-683.	3.6	171
5	Oxytocin-Induced Antinociception in the Spinal Cord is Mediated by a Subpopulation of Glutamatergic Neurons in Lamina I-II Which Amplify GABAergic Inhibition. Molecular Pain, 2008, 4, 1744-8069-4-19.	2.1	120
6	Sciatic nerve cuffing in mice: A model of sustained neuropathic pain. European Journal of Pain, 2008, 12, 591-599.	2.8	117
7	Insights into the mechanisms and the emergence of sex-differences in pain. Neuroscience, 2016, 338, 63-80.	2.3	105
8	Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine. Neuropharmacology, 2000, 39, 1523-1535.	4.1	103
9	Inflammatory Pain Upregulates Spinal Inhibition via Endogenous Neurosteroid Production. Journal of Neuroscience, 2005, 25, 11768-11776.	3.6	95
10	Differentiating Thermal Allodynia and Hyperalgesia Using Dynamic Hot and Cold Plate in Rodents. Journal of Pain, 2009, 10, 767-773.	1.4	95
11	Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents. Nature Neuroscience, 2021, 24, 529-541.	14.8	88
12	Production of 5Â-Reduced Neurosteroids Is Developmentally Regulated and Shapes GABAA Miniature IPSCs in Lamina II of the Spinal Cord. Journal of Neuroscience, 2004, 24, 907-915.	3.6	86
13	Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain, 2013, 154, 1449-1456.	4.2	78
14	Pharmacological plasticity of GABAAreceptors at dentate gyrus synapses in a rat model of temporal lobe epilepsy. Journal of Physiology, 2004, 557, 473-487.	2.9	75
15	Calibrated Forceps: A Sensitive and Reliable Tool for Pain and Analgesia Studies. Journal of Pain, 2006, 7, 32-39.	1.4	62
16	Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels. Current Topics in Behavioral Neurosciences, 2017, 35, 193-211.	1.7	62
17	Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms. Pain, 2008, 139, 603-609.	4.2	50
18	Antinociceptive Action of Oxytocin Involves Inhibition of Potassium Channel Currents in Lamina li Neurons of the Rat Spinal Cord. Molecular Pain, 2009, 5, 1744-8069-5-63.	2.1	48

#	Article	IF	CITATIONS
19	Silent GABAASynapses during Flurazepam Withdrawal Are Region-Specific in the Hippocampal Formation. Journal of Neuroscience, 1997, 17, 3467-3475.	3.6	46
20	Fast Nongenomic Effects of Steroids on Synaptic Transmission and Role of Endogenous Neurosteroids in Spinal Pain Pathways. Journal of Molecular Neuroscience, 2006, 28, 33-52.	2.3	45
21	Long-Lasting Spinal Oxytocin Analgesia Is Ensured by the Stimulation of Allopregnanolone Synthesis Which Potentiates GABAA Receptor-Mediated Synaptic Inhibition. Journal of Neuroscience, 2013, 33, 16617-16626.	3.6	42
22	Reduction and prevention of vincristine-induced neuropathic pain symptoms by the non-benzodiazepine anxiolytic etifoxine are mediated by 3α-reduced neurosteroids. Pain, 2009, 147, 54-59.	4.2	41
23	Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone. Frontiers in Cellular Neuroscience, 2014, 8, 174.	3.7	32
24	Anxiolytics targeting GABA _A receptors: Insights on etifoxine. World Journal of Biological Psychiatry, 2018, 19, S36-S45.	2.6	32
25	Etifoxine stimulates allopregnanolone synthesis in the spinal cord to produce analgesia in experimental mononeuropathy. European Journal of Pain, 2014, 18, 258-268.	2.8	31
26	Pain, Parental Involvement, and Oxytocin in the Neonatal Intensive Care Unit. Frontiers in Psychology, 2019, 10, 715.	2.1	28
27	Nociceptive thresholds are controlled through spinal β2-subunit-containing nicotinic acetylcholine receptors. Pain, 2011, 152, 2131-2137.	4.2	27
28	Characterization of Functional GABAergic Synapses Formed between Rat Hypothalamic Neurons and Pituitary Intermediate Lobe Cells in Coculture: Ca2+Dependence of Spontaneous IPSCs. Journal of Neuroscience, 1996, 16, 4835-4845.	3.6	26
29	Cholecalciferol (Vitamin D3) Reduces Rat Neuropathic Pain by Modulating Opioid Signaling. Molecular Neurobiology, 2019, 56, 7208-7221.	4.0	26
30	PKC activation sets an upper limit to the functional plasticity of GABAergic transmission induced by endogenous neurosteroids. European Journal of Neuroscience, 2007, 26, 1173-1182.	2.6	20
31	Pharmacological rescue of nociceptive hypersensitivity and oxytocin analgesia impairment in a rat model of neonatal maternal separation. Pain, 2018, 159, 2630-2640.	4.2	20
32	Localization of endogenous morphineâ€like compounds in the mouse spinal cord. Journal of Comparative Neurology, 2012, 520, 1547-1561.	1.6	19
33	Mapping of endogenous morphineâ€like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. Journal of Comparative Neurology, 2011, 519, 2390-2416.	1.6	18
34	Etifoxine analgesia in experimental monoarthritis: A combined action that protects spinal inhibition and limits central inflammatory processes. Pain, 2014, 155, 403-412.	4.2	18
35	Corticosterone analgesia is mediated by the spinal production of neuroactive metabolites that enhance <scp>GABA</scp> ergic inhibitory transmission on dorsal horn rat neurons. European Journal of Neuroscience, 2015, 41, 390-397.	2.6	17
36	Peripheral and central alterations affecting spinal nociceptive processing and pain at adulthood in rats exposed to neonatal maternal deprivation. European Journal of Neuroscience, 2016, 44, 1952-1962.	2.6	17

PIERRICK POISBEAU

#	Article	IF	CITATIONS
37	The burden of early life stress on the nociceptive system development and pain responses. European Journal of Neuroscience, 2022, 55, 2216-2241.	2.6	16
38	Favouring inhibitory synaptic drive mediated by GABA _A receptors in the basolateral nucleus of the amygdala efficiently reduces pain symptoms in neuropathic mice. European Journal of Neuroscience, 2016, 43, 1082-1088.	2.6	13
39	Radiotelemetric and Symptomatic Evaluation of Pain in the Rat After Laparotomy: Long-Term Benefits of Perioperative Ropivacaine Care. Journal of Pain, 2011, 12, 246-256.	1.4	12
40	Analgesic and anti-edemic properties of etifoxine in models of inflammatory sensitization. European Journal of Pharmacology, 2019, 843, 316-322.	3.5	12
41	Lithium reverses mechanical allodynia through a mu opioid-dependent mechanism. Molecular Pain, 2018, 14, 174480691775414.	2.1	10
42	Characterization of the fast GABAergic inhibitory action of etifoxine during spinal nociceptive processing in male rats. Neuropharmacology, 2015, 91, 117-122.	4.1	8
43	Long-lasting analgesic and neuroprotective action of the non-benzodiazepine anxiolytic etifoxine in a mouse model of neuropathic pain. Neuropharmacology, 2021, 182, 108407.	4.1	8
44	Calcium Influx through Neuronal-Type Nicotinic Acetylcholine Receptors Present on the Neuroendocrine Cells of the Porcine Pars intermedia. Neuroendocrinology, 1994, 60, 378-388.	2.5	7
45	Abnormal Nociception and Opiate Sensitivity of STOP Null Mice Exhibiting Elevated Levels of the Endogenous Alkaloid Morphine. Molecular Pain, 2010, 6, 1744-8069-6-96.	2.1	7
46	Poincaré plot descriptors of heart rate variability as markers of persistent pain expression in freely moving rats. Physiology and Behavior, 2011, 104, 694-701.	2.1	7
47	Neonatal Pain, Still Searching for the Optimal Approach. Current Pharmaceutical Design, 2018, 23, 5861-5878.	1.9	7
48	Comparison of serum and lithiumâ€heparinate plasma for the accurate measurements of endogenous and exogenous morphine concentrations. British Journal of Clinical Pharmacology, 2012, 74, 381-383.	2.4	6
49	Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional) Tj ETQq1 1 0.7	84314 rgB	T /Overlock
50	Overexpression of chloride importer NKCC1 contributes to the sensory-affective and sociability phenotype of rats following neonatal maternal separation. Brain, Behavior, and Immunity, 2021, 92, 193-202.	4.1	5
51	Electrophysiological Characterization of Non-NMDA Clutamate Receptors on Cultured Intermediate Lobe Cells of the Rat Pituitary. Neuroendocrinology, 1996, 64, 162-168.	2.5	4
52	The non-benzodiazepine anxiolytic etifoxine limits mechanical allodynia and anxiety-like symptoms in a mouse model of streptozotocin-induced diabetic neuropathy. PLoS ONE, 2021, 16, e0248092.	2.5	4
53	Spinal integration of hot and cold nociceptive stimuli by wide-dynamic-range neurons in anesthetized adult rats. Pain Reports, 2021, 6, e983.	2.7	4
54	Endogenous morphineâ€6â€glucuronide (M6G) is present in the plasma of patients: Validation of a specific antiâ€M6G antibody for clinical and basic research. BioFactors, 2014, 40, 113-120.	5.4	3

#	Article	IF	CITATIONS
55	Plasma glucocorticoids differentially modulate phasic and tonic GABA inhibition during early postnatal development in rat spinal lamina II. Neuroscience Letters, 2014, 578, 39-43.	2.1	3
56	Plasticité de l'inhibition spinale et symptômes douloureux chez l'animal. Douleurs, 2006, 7, 187-193.	0.0	2
57	Pain Behavioural Response to Acoustic and Light Environmental Changes in Very Preterm Infants. Children, 2021, 8, 1081.	1.5	2
58	Conséquences des perturbations périnatales sur les réponses douloureuses. Douleurs, 2015, 16, 77-85.	0.0	1
59	Impact of coronavirus disease 2019 on chronic pain structures: data from French national survey. Journal of Comparative Effectiveness Research, 2022, , .	1.4	1