David A Lytle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5308455/publications.pdf Version: 2024-02-01

DAVID A LYTLE

#	Article	IF	CITATIONS
1	Designing flow regimes to support entire river ecosystems. Frontiers in Ecology and the Environment, 2021, 19, 326-333.	4.0	32
2	Hydropeaking intensity and dam proximity limit aquatic invertebrate diversity in the Colorado River Basin. Ecosphere, 2021, 12, e03559.	2.2	7
3	Integrated ecosystems: linking food webs through reciprocal resource reliance. Ecology, 2021, 102, e03450.	3.2	8
4	Food chain length and trophic niche of a key predator in montane desert streams. Hydrobiologia, 2020, 847, 983-997.	2.0	1
5	Prepare river ecosystems for an uncertain future. Nature, 2019, 570, 301-303.	27.8	142
6	Increasing drought favors nonnative fishes in a dryland river: evidence from a multispecies demographic model. Ecosphere, 2019, 10, e02681.	2.2	26
7	The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 2018, 63, 141-163.	2.4	273
8	Traits-based approaches support the conservation relevance of landscape genetics. Conservation Genetics, 2018, 19, 17-26.	1.5	8
9	Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution, 2018, 2, 86-93.	7.8	188
10	Do latitudinal gradients exist in New Zealand stream invertebrate metacommunities?. PeerJ, 2018, 6, e4898.	2.0	9
11	Seasonality and predictability shape temporal species diversity. Ecology, 2017, 98, 1201-1216.	3.2	230
12	Linking river flow regimes to riparian plant guilds: a communityâ€wide modeling approach. Ecological Applications, 2017, 27, 1338-1350.	3.8	51
13	Hydrology drives seasonal variation in dryland stream macroinvertebrate communities. Aquatic Sciences, 2017, 79, 705-717.	1.5	16
14	High mortality and enhanced recovery: modelling the countervailing effects of disturbance on population dynamics. Ecology Letters, 2017, 20, 1566-1575.	6.4	28
15	The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives. Journal of Theoretical Biology, 2017, 412, 172-185.	1.7	14
16	Herbivory enhances the diversity of primary producers in pond ecosystems. Ecology, 2017, 98, 48-56.	3.2	12
17	Importance of neutral processes varies in time and space: Evidence from dryland stream ecosystems. PLoS ONE, 2017, 12, e0176949.	2.5	3
18	Convergent diversity and trait composition in temporary streams and ponds. Ecosphere, 2016, 7, e01350.	2.2	33

DAVID A LYTLE

#	Article	IF	CITATIONS
19	Population models with partial migration. Journal of Difference Equations and Applications, 2016, 22, 316-329.	1.1	3
20	Two new species of Grylloblatta Walker, 1914 (Grylloblattodea: Grylloblattidae) from western North America, and a neotype designation for G. rothi Gurney 1953. Zootaxa, 2015, 3949, 408.	0.5	4
21	Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in aridâ€land headwater streams. Freshwater Biology, 2015, 60, 2547-2558.	2.4	142
22	Dispersal strength determines metaâ€community structure in a dendritic riverine network. Journal of Biogeography, 2015, 42, 778-790.	3.0	168
23	Invertebrate assemblages of pools in aridâ€land streams have high functional redundancy and are resistant to severe drying. Freshwater Biology, 2014, 59, 491-501.	2.4	83
24	Are largeâ€ s cale flow experiments informing the science and management of freshwater ecosystems?. Frontiers in Ecology and the Environment, 2014, 12, 176-185.	4.0	180
25	Biogeography and conservation of aquatic fauna in spring-fed tropical canyons of the southern Sonoran Desert, Mexico. Biodiversity and Conservation, 2014, 23, 2705-2748.	2.6	45
26	Top predator removals have consistent effects on large species despite high environmental variability. Oikos, 2014, 123, 807-816.	2.7	21
27	Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an aridâ€land stream network. Freshwater Biology, 2013, 58, 1016-1028.	2.4	131
28	Quantifying invertebrate resistance to floods: a global-scale meta-analysis. , 2012, 22, 2164-2175.		75
29	Severe drought drives novel community trajectories in desert stream pools. Freshwater Biology, 2011, 56, 2070-2081.	2.4	158
30	Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation: riparian vegetationâ€flow response guilds. Freshwater Biology, 2010, 55, 206-225.	2.4	315
31	Ecosystem effects of environmental flows: modelling and experimental floods in a dryland river. Freshwater Biology, 2010, 55, 68-85.	2.4	162
32	Automated processing and identification of benthic invertebrate samples. Journal of the North American Benthological Society, 2010, 29, 867-874.	3.1	55
33	Why do we fly? Ecologists' sins of emission. Frontiers in Ecology and the Environment, 2009, 7, 294-296.	4.0	74
34	Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Machine Vision and Applications, 2008, 19, 105-123.	2.7	105
35	Drought-Escape Behaviors Of Aquatic Insects May Be Adaptations To Highly Variable Flow Regimes Characteristic Of Desert Rivers. Southwestern Naturalist, 2008, 53, 399-402.	0.1	37
36	Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 453-462.	2.6	64

DAVID A LYTLE

#	Article	IF	CITATIONS
37	Seasonal flow variation allows 'time-sharing' by disparate aquatic insect communities in montane desert streams. Freshwater Biology, 2007, 52, 290-304.	2.4	119
38	Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshwater Biology, 2007, 52, 1881-1897.	2.4	93
39	Rainfall Cues and Flash-Flood Escape in Desert Stream Insects. Journal of Insect Behavior, 2007, 20, 413-423.	0.7	20
40	CONSTRAINTS ON PRIMARY PRODUCER N:P STOICHIOMETRY ALONG N:P SUPPLY RATIO GRADIENTS. Ecology, 2005, 86, 1894-1904.	3.2	120
41	HYDROLOGIC REGIMES AND RIPARIAN FORESTS: A STRUCTURED POPULATION MODEL FOR COTTONWOOD. Ecology, 2004, 85, 2493-2503.	3.2	197
42	Exaptation and Flash Flood Escape in the Giant Water Bugs. Journal of Insect Behavior, 2004, 17, 169-178.	0.7	20
43	Adaptation to natural flow regimes. Trends in Ecology and Evolution, 2004, 19, 94-100.	8.7	1,398
44	STOICHIOMETRY AND PLANKTONIC GRAZER COMPOSITION OVER GRADIENTS OF LIGHT, NUTRIENTS, AND PREDATION RISK. Ecology, 2004, 85, 2291-2301.	3.2	66
45	Disturbance Regimes and Lifeâ€History Evolution. American Naturalist, 2001, 157, 525-536.	2.1	156
46	Population connectivity of aquatic insects in a damâ€regulated, desert river. River Research and Applications, 0, , .	1.7	0