
Daniel J Peet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5308395/publications.pdf Version: 2024-02-01

DANIEL I DEET

#	Article	IF	CITATIONS
1	Asparagine Hydroxylation of the HIF Transactivation Domain: A Hypoxic Switch. Science, 2002, 295, 858-861.	12.6	1,372
2	Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXRα. Cell, 1998, 93, 693-704.	28.9	1,322
3	FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes and Development, 2002, 16, 1466-1471.	5.9	1,303
4	The LXRs: a new class of oxysterol receptors. Current Opinion in Genetics and Development, 1998, 8, 571-575.	3.3	348
5	Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3368-3373.	7.1	235
6	The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cellular and Molecular Life Sciences, 2003, 60, 1376-1393.	5.4	217
7	The Asparaginyl Hydroxylase Factor Inhibiting HIF-1α Is an Essential Regulator of Metabolism. Cell Metabolism, 2010, 11, 364-378.	16.2	204
8	bHLH–PAS proteins in cancer. Nature Reviews Cancer, 2013, 13, 827-841.	28.4	197
9	Turn me on: regulating HIF transcriptional activity. Cell Death and Differentiation, 2008, 15, 642-649.	11.2	187
10	Cell-specific Regulation of Hypoxia-inducible Factor (HIF)-1α and HIF-2α Stabilization and Transactivation in a Graded Oxygen Environment. Journal of Biological Chemistry, 2006, 281, 22575-22585.	3.4	182
11	Rare variants in single-minded 1 (SIM1) are associated with severe obesity. Journal of Clinical Investigation, 2013, 123, 3042-3050.	8.2	135
12	Oxygenâ€dependent regulation of hypoxiaâ€inducible factors by prolyl and asparaginyl hydroxylation. FEBS Journal, 2003, 270, 781-790.	0.2	117
13	The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia, 2011, 25, 1533-1542.	7.2	117
14	Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi–like features. Journal of Clinical Investigation, 2013, 123, 3037-3041.	8.2	105
15	The Transcription Factor Encyclopedia. Genome Biology, 2012, 13, R24.	9.6	103
16	Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica, 2010, 95, 776-784.	3.5	84
17	Defining the Role for XAP2 in Stabilization of the Dioxin Receptor. Journal of Biological Chemistry, 2003, 278, 35878-35888.	3.4	82
18	FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1. PLoS Biology, 2016, 14, e1002347.	5.6	78

DANIEL J PEET

#	Article	IF	CITATIONS
19	Cancerâ€like metabolism of the mammalian retina. Clinical and Experimental Ophthalmology, 2015, 43, 367-376.	2.6	75
20	Regulation of Gene Expression by the Hypoxia-Inducible Factors. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 229-243.	3.4	74
21	Substrate Requirements of the Oxygen-sensing Asparaginyl Hydroxylase Factor-inhibiting Hypoxia-inducible Factor. Journal of Biological Chemistry, 2004, 279, 14391-14397.	3.4	62
22	Activity of Hypoxia-inducible Factor 2α Is Regulated by Association with the NF-κB Essential Modulator. Journal of Biological Chemistry, 2005, 280, 14240-14251.	3.4	61
23	Differences in hydroxylation and binding of Notch and HIF-1α demonstrate substrate selectivity for factor inhibiting HIF-1 (FIH-1). International Journal of Biochemistry and Cell Biology, 2009, 41, 1563-1571.	2.8	55
24	The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia. Cell Metabolism, 2018, 27, 898-913.e7.	16.2	55
25	M-Type Pyruvate Kinase Isoforms and Lactate Dehydrogenase A in the Mammalian Retina: Metabolic Implications. , 2016, 57, 66.		46
26	Engineering novel specificities for ligand-activated transcription in the nuclear hormone receptor RXR. Chemistry and Biology, 1998, 5, 13-21.	6.0	44
27	Hormonally regulated follicle differentiation and luteinization in the mouse is associated with hypoxia inducible factor activity. Molecular and Cellular Endocrinology, 2010, 327, 47-55.	3.2	42
28	HIF-2α Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1. Cancer Research, 2017, 77, 5452-5463.	0.9	41
29	From Polyps to People. Annals of the New York Academy of Sciences, 2009, 1177, 19-29.	3.8	40
30	Oxygen-dependent hydroxylation by Factor Inhibiting HIF (FIH) regulates the TRPV3 ion channel. Journal of Cell Science, 2014, 128, 225-31.	2.0	36
31	Regulation of HIF: Asparaginyl Hydroxylation. Novartis Foundation Symposium, 0, , 37-53.	1.1	34
32	Hairs from Patients with Maple Syrup Urine Disease Show a Structural Defect in the Fiber Cuticle. Journal of Investigative Dermatology, 1996, 106, 461-464.	0.7	32
33	Reciprocal regulation of the basic helix–loop–helix/Per–Arnt–Sim partner proteins, Arnt and Arnt2, during neuronal differentiation. Nucleic Acids Research, 2013, 41, 5626-5638.	14.5	29
34	Factor Inhibiting HIF (FIH) Recognizes Distinct Molecular Features within Hypoxia-inducible Factor-α (HIF-α) versus Ankyrin Repeat Substrates. Journal of Biological Chemistry, 2012, 287, 8769-8781.	3.4	27
35	Characterization of Ankyrin Repeat–Containing Proteins as Substrates of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxiaâ€Inducible Transcription Factor. Methods in Enzymology, 2007, 435, 61-85.	1.0	24
36	Human Variants in the Neuronal Basic Helix-Loop-Helix/Per-Arnt-Sim (bHLH/PAS) Transcription Factor Complex NPAS4/ARNT2 Disrupt Function. PLoS ONE, 2014, 9, e85768.	2.5	22

DANIEL J PEET

#	Article	IF	CITATIONS
37	HIF signalling: The eyes have it. Experimental Cell Research, 2017, 356, 136-140.	2.6	20
38	Consequences of IkappaB alpha hydroxylation by the factor inhibiting HIF (FIH). FEBS Letters, 2010, 584, 4725-4730.	2.8	19
39	Oxygen-Dependent Asparagine Hydroxylation. Methods in Enzymology, 2004, 381, 467-487.	1.0	17
40	Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1. Redox Biology, 2019, 26, 101265.	9.0	16
41	Oxygen-regulated gene expression in murine cumulus cells. Reproduction, Fertility and Development, 2015, 27, 407.	0.4	15
42	Hypoxic Induction of the Regulator of G-Protein Signalling 4 Gene Is Mediated by the Hypoxia-Inducible Factor Pathway. PLoS ONE, 2012, 7, e44564.	2.5	14
43	Ankyrin Repeat Proteins of Orf Virus Influence the Cellular Hypoxia Response Pathway. Journal of Virology, 2017, 91, .	3.4	14
44	Regulation of HIF: asparaginyl hydroxylation. Novartis Foundation Symposium, 2006, 272, 37-49; discussion 49-53, 131-40.	1.1	14
45	Asparagine Hydroxylation is a Reversible Post-translational Modification. Molecular and Cellular Proteomics, 2020, 19, 1777-1789.	3.8	13
46	<scp>MAGED</scp> 1 is a novel regulator of a select subset of <scp>bHLH PAS</scp> transcription factors. FEBS Journal, 2016, 283, 3488-3502.	4.7	11
47	Power to see—Drivers of aerobic glycolysis in the mammalian retina: A review. Clinical and Experimental Ophthalmology, 2020, 48, 1057-1071.	2.6	11
48	Characterization of human variants in obesity-related SIM1 protein identifies a hot-spot for dimerization with the partner protein ARNT2. Biochemical Journal, 2014, 461, 403-412.	3.7	10
49	Modulation of TRP Channel Activity by Hydroxylation and Its Therapeutic Potential. Pharmaceuticals, 2017, 10, 35.	3.8	8
50	Characterization of the novel spontaneously immortalized rat Müller cell line SIRMu-1. Experimental Eye Research, 2019, 181, 127-135.	2.6	7
51	The conservation and functionality of the oxygen-sensing enzyme Factor Inhibiting HIF (FIH) in non-vertebrates. PLoS ONE, 2019, 14, e0216134.	2.5	7
52	Molecular characterisation of rare loss-of-function NPAS3 and NPAS4 variants identified in individuals with neurodevelopmental disorders. Scientific Reports, 2021, 11, 6602.	3.3	6
53	When is a target not a target?. ELife, 2019, 8, .	6.0	6
54	A comparative study of covalently-bound fatty acids in keratinized tissues. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 363-366.	0.2	4

DANIEL J PEET

#	Article	IF	CITATIONS
55	Mammalian Two-Hybrid Assay Showing Redox Control of HIF-Like Factor. Methods in Enzymology, 2002, 353, 3-10.	1.0	3
56	Covalently Bound Fatty Acids and Ceramides in Wool. Journal of the Textile Institute, 1996, 87, 608-611.	1.9	2
57	Potential adverse effects to the retina of cancer therapy targeting pyruvate kinase M2. Acta Oncológica, 2015, 54, 136-137.	1.8	1
58	Hypoxia inducible factor single nucleotide polymorphisms: exploring the role of <scp>HIF</scp> polymorphisms in retinal disease. Clinical and Experimental Ophthalmology, 2015, 43, 1-2.	2.6	1
59	RNA sequencing data of cultured primary rat Müller cells, the spontaneously immortalized rat Müller cell line, SIRMu-1, and the SV40-transformed rat Müller cell line, rMC-1. Data in Brief, 2019, 23, 103721.	1.0	0