Serge Rivest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5306928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early monocyte modulation by the non-erythropoietic peptide ARA 290 decelerates AD-like pathology progression. Brain, Behavior, and Immunity, 2022, 99, 363-382.	4.1	8
2	Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacological Reviews, 2022, 74, 1-17.	16.0	23
3	PDK4 Inhibition Ameliorates Melatonin Therapy by Modulating Cerebral Metabolism and Remyelination in an EAE Demyelinating Mouse Model of Multiple Sclerosis. Frontiers in Immunology, 2022, 13, 862316.	4.8	4
4	Contextâ€dependent transcriptional regulation of microglial proliferation. Glia, 2022, 70, 572-589.	4.9	12
5	Structural analysis of the microglia–interneuron interactions in the CA1 hippocampal area of the APP/PS1 mouse model of Alzheimer's disease. Journal of Comparative Neurology, 2022, 530, 1423-1437.	1.6	4
6	Reduced melatonin levels may facilitate glioblastoma initiation in the subventricular zone. Expert Reviews in Molecular Medicine, 2022, 24, 1-8.	3.9	5
7	PRMT1 is required for the generation of MHC-associated microglia and remyelination in the central nervous system. Life Science Alliance, 2022, 5, e202201467.	2.8	3
8	The Intellicage system provides a reproducible and standardized method to assess behavioral changes in cuprizone-induced demyelination mouse model. Behavioural Brain Research, 2021, 400, 113039.	2.2	4
9	Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 8.	6.2	29
10	Targeting innate immunity to protect and cure Alzheimer's disease: opportunities and pitfalls. Molecular Psychiatry, 2021, 26, 5504-5515.	7.9	22
11	Triggering Innate Immune Receptors as New Therapies in Alzheimer's Disease and Multiple Sclerosis. Cells, 2021, 10, 2164.	4.1	3
12	Selective Immunomodulatory and Neuroprotective Effects of a NOD2 Receptor Agonist on Mouse Models of Multiple Sclerosis. Neurotherapeutics, 2021, 18, 889-904.	4.4	7
13	Multifocal Cerebral Microinfarcts Modulate Early Alzheimer's Disease Pathology in a Sex-Dependent Manner. Frontiers in Immunology, 2021, 12, 813536.	4.8	15
14	Beneficial Roles of Microglia and Growth Factors in MS, a Brief Review. Frontiers in Cellular Neuroscience, 2020, 14, 284.	3.7	15
15	Muramyl dipeptide-mediated immunomodulation on monocyte subsets exerts therapeutic effects in a mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 218.	7.2	16
16	An Early Microglial Response Is Needed To Efficiently Control Herpes Simplex Virus Encephalitis. Journal of Virology, 2020, 94, .	3.4	21
17	Inflammatory Monocytes and Neutrophils Regulate Streptococcus suis-Induced Systemic Inflammation and Disease but Are Not Critical for the Development of Central Nervous System Disease in a Mouse Model of Infection. Infection and Immunity, 2020, 88, .	2.2	10
18	Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opinion on Therapeutic Targets, 2020, 24, 331-344.	3.4	43

#	Article	IF	CITATIONS
19	Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases. Cells, 2020, 9, 1595.	4.1	33
20	Role of Macrophage Colony-Stimulating Factor Receptor on the Proliferation and Survival of Microglia Following Systemic Nerve and Cuprizone-Induced Injuries. Frontiers in Immunology, 2020, 11, 47.	4.8	24
21	QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Reports, 2020, 33, 108560.	6.4	19
22	Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer's Disease and Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2019, 13, 355.	3.7	77
23	Ultrastructural evidence of microglial heterogeneity in Alzheimer's disease amyloid pathology. Journal of Neuroinflammation, 2019, 16, 87.	7.2	73
24	Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain, 2018, 141, 1094-1110.	7.6	67
25	Role of the chemokine receptors CCR2 and CX3CR1 in an experimental model of thrombotic stroke. Brain, Behavior, and Immunity, 2018, 70, 280-292.	4.1	17
26	New Therapeutic Avenues of mCSF for Brain Diseases and Injuries. Frontiers in Cellular Neuroscience, 2018, 12, 499.	3.7	24
27	Getting Too Old Too Quickly for Their Job: Senescent Glial Cells Promote Neurodegeneration. Neuron, 2018, 100, 777-779.	8.1	5
28	A â€~don't eat me' immune signal protects neuronal connections. Nature, 2018, 563, 42-43.	27.8	12
29	Bone Marrow Chimeras to Study Neuroinflammation. Current Protocols in Immunology, 2018, 123, e56.	3.6	5
30	mCSF-Induced Microglial Activation Prevents Myelin Loss and Promotes Its Repair in a Mouse Model of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2018, 12, 178.	3.7	42
31	Triggering of NOD2 Receptor Converts Inflammatory Ly6C high into Ly6C low Monocytes with Patrolling Properties. Cell Reports, 2017, 20, 1830-1843.	6.4	51
32	Microglia Ontology and Signaling. Frontiers in Cell and Developmental Biology, 2016, 4, 72.	3.7	59
33	Microglia: Senescence Impairs Clearance of Myelin Debris. Current Biology, 2016, 26, R772-R775.	3.9	34
34	Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain, 2016, 139, 653-661.	7.6	199
35	Tissue-Plasminogen Activator Attenuates Alzheimer's Disease-Related Pathology Development in APPswe/PS1 Mice. Neuropsychopharmacology, 2016, 41, 1297-1307.	5.4	26
36	Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 310-322.	3.8	43

#	Article	IF	CITATIONS
37	Microglia in Alzheimer's disease: A multifaceted relationship. Brain, Behavior, and Immunity, 2016, 55, 138-150.	4.1	98
38	High fat diet exacerbates Alzheimer's disease-related pathology in APPswe/PS1 mice. Oncotarget, 2016, 7, 67808-67827.	1.8	94
39	Severe chronic cerebral hypoperfusion induces microglial dysfunction leading to memory loss in APPswe/PS1 mice. Oncotarget, 2016, 7, 11864-11880.	1.8	25
40	Sub-acute systemic erythropoietin administration reduces ischemic brain injury in an age-dependent manner. Oncotarget, 2016, 7, 35552-35561.	1.8	19
41	Anti-inflammatory Signaling in Microglia Exacerbates Alzheimer's Disease-Related Pathology. Neuron, 2015, 85, 450-452.	8.1	57
42	Stimulation of Monocytes, Macrophages, and Microglia by Amphotericin B and Macrophage Colony-Stimulating Factor Promotes Remyelination. Journal of Neuroscience, 2015, 35, 1136-1148.	3.6	76
43	Role of adaptor protein MyD88 in TLR-mediated preconditioning and neuroprotection after acute excitotoxicity. Brain, Behavior, and Immunity, 2015, 46, 221-231.	4.1	35
44	GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer's disease. Brain, Behavior, and Immunity, 2015, 46, 112-120.	4.1	50
45	C–C chemokine receptor type 2 (CCR2) signaling protects neonatal male mice with hypoxic–ischemic hippocampal damage from developing spatial learning deficits. Behavioural Brain Research, 2015, 286, 146-151.	2.2	22
46	The dynamics of monocytes and microglia in Alzheimer's disease. Alzheimer's Research and Therapy, 2015, 7, 41.	6.2	168
47	Inefficient clearance of myelin debris by microglia impairs remyelinating processes. Journal of Experimental Medicine, 2015, 212, 481-495.	8.5	462
48	TREM2 enables amyloid \hat{I}^2 clearance by microglia. Cell Research, 2015, 25, 535-536.	12.0	28
49	Patrolling monocytes play a critical role in CX3CR1-mediated neuroprotection during excitotoxicity. Brain Structure and Function, 2015, 220, 1759-1776.	2.3	29
50	CX3CR1 in multiple sclerosis. Oncotarget, 2015, 6, 19946-19947.	1.8	6
51	The Role of Pericytes in Neurovascular Unit Remodeling in Brain Disorders. International Journal of Molecular Sciences, 2014, 15, 6453-6474.	4.1	104
52	The HPA ââ,¬â€œ Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Frontiers in Immunology, 2014, 5, 136.	4.8	304
53	The Impact of Ly6C ^{low} Monocytes after Cerebral Hypoxia-Ischemia in Adult Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, e1-e9.	4.3	48
54	Migration of Bone Marrowâ€Derived Cells Into the Central Nervous System in Models of Neurodegeneration. Journal of Comparative Neurology, 2013, 521, 3863-3876.	1.6	54

#	Article	IF	CITATIONS
55	Evidence for a Gender-Specific Protective Role of Innate Immune Receptors in a Model of Perinatal Brain Injury. Journal of Neuroscience, 2013, 33, 11556-11572.	3.6	47
56	Real-Time InÂVivo Imaging Reveals the Ability of Monocytes to Clear Vascular Amyloid Beta. Cell Reports, 2013, 5, 646-653.	6.4	195
57	A deficiency in CCR2+ monocytes: the hidden side of Alzheimer's disease. Journal of Molecular Cell Biology, 2013, 5, 284-293.	3.3	87
58	Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathologica Communications, 2013, 1, 75.	5.2	58
59	Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer's disease-related pathology. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1941-1946.	7.1	225
60	The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease. Frontiers in Physiology, 2013, 4, 45.	2.8	77
61	Migration of Bone Marrowâ€Derived Cells Into the Central Nervous System in Models of Neurodegeneration. Journal of Comparative Neurology, 2013, 521, Spc1.	1.6	48
62	IL-1RAcPb signaling regulates adaptive mechanisms in neurons that promote their long-term survival following excitotoxic insults. Frontiers in Cellular Neuroscience, 2013, 7, 9.	3.7	15
63	Impact of deficiency in CCR2 and CX3CR1 receptors on monocytes trafficking in herpes simplex virus encephalitis. Journal of General Virology, 2012, 93, 1294-1304.	2.9	24
64	Effects of Myeloablation, Peripheral Chimerism, and Whole-Body Irradiation on the Entry of Bone Marrow-Derived Cells into the Brain. Cell Transplantation, 2012, 21, 1149-1159.	2.5	63
65	Hematopoietic MyD88-adaptor Protein Acts as a Natural Defense Mechanism for Cognitive Deficits in Alzheimer's Disease. Stem Cell Reviews and Reports, 2012, 8, 898-904.	5.6	27
66	Age-related changes in synaptic markers and monocyte subsets link the cognitive decline of APPSwe/PS1 mice. Frontiers in Cellular Neuroscience, 2012, 6, 51.	3.7	33
67	Hematopoietic CC-Chemokine Receptor 2 (CCR2) Competent Cells Are Protective for the Cognitive Impairments and Amyloid Pathology in a Transgenic Mouse Model of Alzheimer's Disease. Molecular Medicine, 2012, 18, 297-313.	4.4	61
68	The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer's disease. European Journal of Neuroscience, 2012, 35, 1917-1937.	2.6	77
69	Estrogen Receptor Transrepresses Brain Inflammation. Cell, 2011, 145, 495-497.	28.9	24
70	Immune Mechanisms Underlying the Beneficial Effects of Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Neurotherapeutics, 2011, 8, 643-649.	4.4	17
71	MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2011, 6, 5.	10.8	47
72	Interactions Between the Immune and Neuroendocrine Systems. Progress in Brain Research, 2010, 181, 43-53.	1.4	89

#	Article	IF	CITATIONS
73	Regulation of innate immune responses in the brain. Nature Reviews Immunology, 2009, 9, 429-439.	22.7	719
74	Taking Advantage of the Systemic Immune System to Cure Brain Diseases. Neuron, 2009, 64, 55-60.	8.1	152
75	A Functional Analysis of EP4 Receptor-Expressing Neurons in Mediating the Action of Prostaglandin E2 Within Specific Nuclei of the Brain in Response to Circulating Interleukin-1β. Journal of Neurochemistry, 2008, 74, 2134-2145.	3.9	65
76	Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry, 2008, 76, 855-864.	3.9	87
77	Microglia. Current Biology, 2008, 18, R506-R508.	3.9	76
78	Bone-marrow-derived microglia: myth or reality?. Current Opinion in Pharmacology, 2008, 8, 508-518.	3.5	130
79	Powerful beneficial effects of macrophage colony-stimulating factor on Â-amyloid deposition and cognitive impairment in Alzheimer's disease. Brain, 2008, 132, 1078-1092.	7.6	210
80	Toll-Like Receptor Signaling Is Critical for Wallerian Degeneration and Functional Recovery after Peripheral Nerve Injury. Journal of Neuroscience, 2007, 27, 12565-12576.	3.6	221
81	Neuroprotective effects of resident microglia following acute brain injury. Journal of Comparative Neurology, 2007, 504, 716-729.	1.6	75
82	Tollâ€like receptor (TLR)â€⊋ and TLRâ€4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. Journal of Neurochemistry, 2007, 102, 37-50.	3.9	257
83	Tumor Necrosis Factor But Not Interleukin 1 Mediates Neuroprotection in Response to Acute Nitric Oxide Excitotoxicity. Journal of Neuroscience, 2006, 26, 143-151.	3.6	119
84	Cannabinoids in Microglia: A New Trick for Immune Surveillance and Neuroprotection. Neuron, 2006, 49, 4-8.	8.1	25
85	Bone Marrow-Derived Microglia Play a Critical Role in Restricting Senile Plaque Formation in Alzheimer's Disease. Neuron, 2006, 49, 489-502.	8.1	1,123
86	Molecular and Cellular Immune Mediators of Neuroprotection. Molecular Neurobiology, 2006, 34, 221-242.	4.0	67
87	Effects of TNF- \hat{I} ± and IFN- \hat{I}^3 on Nitric Oxide-Induced Neurotoxicity in the Mouse Brain. Journal of Immunology, 2004, 172, 7043-7052.	0.8	62
88	Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB Journal, 2004, 18, 998-1000.	0.5	322
89	Cooperation between tollâ€like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gramâ€negative and gramâ€positive bacteria. European Journal of Immunology, 2003, 33, 1127-1138.	2.9	157
90	Molecular insights on the cerebral innate immune system. Brain, Behavior, and Immunity, 2003, 17, 13-19.	4.1	374

#	Article	IF	CITATIONS
91	Chemokine Expression by Glial Cells Directs Leukocytes to Sites of Axonal Injury in the CNS. Journal of Neuroscience, 2003, 23, 7922-7930.	3.6	434
92	Effects of Systemic Immunogenic Insults and Circulating Proinflammatory Cytokines on the Transcription of the Inhibitory Factor κBα Within Specific Cellular Populations of the Rat Brain. Journal of Neurochemistry, 2002, 73, 309-321.	3.9	161
93	Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. Journal of Comparative Neurology, 2001, 434, 461-477.	1.6	108
94	Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: No requirement for proapoptotic interleukinâ€1β in neurodegeneration. Annals of Neurology, 2001, 50, 630-639.	5.3	126
95	Tollâ€like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gramâ€negative bacterial cell wall components. FASEB Journal, 2001, 15, 155-163.	0.5	450
96	The complement system is an integrated part of the natural innate immune response in the brain. FASEB Journal, 2001, 15, 1410-1412.	0.5	42
97	Circulating cell wall components derived from gramâ€negative, not gramâ€positive, bacteria cause a profound induction of the geneâ€encoding Tollâ€like receptor 2 in the CNS. Journal of Neurochemistry, 2001, 79, 648-657.	3.9	172
98	Role of Microglial-Derived Tumor Necrosis Factor in Mediating CD14 Transcription and Nuclear Factor l̂º B Activity in the Brain during Endotoxemia. Journal of Neuroscience, 2000, 20, 3456-3468.	3.6	199
99	Selective Involvement of Interleukin-6 in the Transcriptional Activation of the Suppressor of Cytokine Signaling-3 in the Brain during Systemic Immune Challenges*. Endocrinology, 2000, 141, 3749-3763.	2.8	71
100	How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectiousâ€∫Stimuli. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 22-38.	1.8	22
101	Selective Involvement of Interleukin-6 in the Transcriptional Activation of the Suppressor of Cytokine Signaling-3 in the Brain during Systemic Immune Challenges. Endocrinology, 2000, 141, 3749-3763.	2.8	29
102	An Essential Role of Interleukin-1β in Mediating NF-κB Activity and COX-2 Transcription in Cells of the Blood–Brain Barrier in Response to a Systemic and Localized Inflammation But Not During Endotoxemia. Journal of Neuroscience, 1999, 19, 10923-10930.	3.6	258
103	Interleukin-6 Is a Needed Proinflammatory Cytokine in the Prolonged Neural Activity and Transcriptional Activation of Corticotropin-Releasing Factor during Endotoxemia1. Endocrinology, 1999, 140, 3890-3903.	2.8	135
104	Distribution, regulation and colocalization of the genes encoding the EP ₂ ―and EP ₄ â€PGE ₂ receptors in the rat brain and neuronal responses to systemic inflammation. European Journal of Neuroscience, 1999, 11, 2651-2668.	2.6	196
105	Neuronal activity and transcription of proinflammatory cytokines, ll̂ºBl̂±, and iNOS in the mouse brain during acute endotoxemia and chronic infection with Trypanosoma brucei brucei. Journal of Neuroscience Research, 1999, 57, 801-816.	2.9	25
106	Regulation of the Gene Encoding Tumor Necrosis Factor Alpha (TNF-α) in the Rat Brain and Pituitary in Response to Different Models of Systemic Immune Challenge. Journal of Neuropathology and Experimental Neurology, 1999, 58, 61-77.	1.7	125
107	Neuronal activity and transcription of proinflammatory cytokines, ll̂ºBl̂±, and iNOS in the mouse brain during acute endotoxemia and chronic infection with Trypanosoma brucei brucei. Journal of Neuroscience Research, 1999, 57, 801-816.	2.9	2
108	Interleukin-6 Is a Needed Proinflammatory Cytokine in the Prolonged Neural Activity and Transcriptional Activation of Corticotropin-Releasing Factor during Endotoxemia. Endocrinology, 1999, 140, 3890-3903.	2.8	35

#	Article	IF	CITATIONS
109	The Bacterial Endotoxin Lipopolysaccharide has the Ability to Target the Brain in Upregulating Its Membrane CD14 Receptor Within Specific Cellular Populations. Brain Pathology, 1998, 8, 625-640.	4.1	193
110	Expression and neuropeptidergic characterization of estrogen receptors (ER? and ER?) throughout the rat brain: Anatomical evidence of distinct roles of each subtype. Journal of Neurobiology, 1998, 36, 357-378.	3.6	525
111	Effect of Acute Systemic Inflammatory Response and Cytokines on the Transcription of the Genes Encoding Cyclooxygenase Enzymes (COXâ€1 and COXâ€2) in the Rat Brain. Journal of Neurochemistry, 1998, 70, 452-466.	3.9	238
112	Expression and neuropeptidergic characterization of estrogen receptors (ERα and ERβ) throughout the rat brain: Anatomical evidence of distinct roles of each subtype. , 1998, 36, 357.		3
113	Influence of Interleukin-6 on Neural Activity and Transcription of the Gene Encoding Corticotrophin-releasing Factor in the Rat Brain: An Effect Depending Upon the Route of Administration. European Journal of Neuroscience, 1997, 9, 1461-1472.	2.6	51
114	Corticotropin-releasing factor and glucocorticoid receptor (GR) gene expression in the paraventricular nucleus of immune-challenged transgenic mice expressing type II GR antisense ribonucleic acid. Journal of Molecular Neuroscience, 1997, 8, 165-179.	2.3	18
115	Regulation of the Genes Encoding Interleukinâ€6, Its Receptor, and gp130 in the Rat Brain in Response to the Immune Activator Lipopolysaccharide and the Proinflammatory Cytokine Interleukinâ€1β. Journal of Neurochemistry, 1997, 69, 1668-1683.	3.9	276
116	Functional circuitry in the brain of immune-challenged rats: Partial involvement of prostaglandins. , 1997, 387, 307-324.		109
117	Effect of Immune and Metabolic Challenges on the Luteinizing Hormone-Releasing Hormone Neuronal System in Cycling Female Rats: An Evaluation at the Transcriptional Level. Endocrinology, 1997, 138, 1374-1384.	2.8	16
118	Luteinizing Hormone Secretion and Corticotropin-Releasing Factor Gene Expression in the Paraventricular Nucleus of Rhesus Monkeys Following Cortisol Synthesis Inhibition. Endocrinology, 1997, 138, 2249-2258.	2.8	10
119	Effect of dexfenfluramine on the transcriptional activation of CRF and its type 1 receptor within the paraventricular nucleus of the rat hypothalamus. British Journal of Pharmacology, 1996, 117, 1021-1034.	5.4	36
120	Neuronal Activity and Neuropeptide Gene Transcription in the Brains of Immuneâ€Challenged Rats. Journal of Neuroendocrinology, 1995, 7, 501-525.	2.6	187
121	Molecular mechanisms and neural pathways mediating the influence of interleukin-1 on the activity of neuroendocrine CRF motoneurons in the rat. International Journal of Developmental Neuroscience, 1995, 13, 135-146.	1.6	42
122	Corticotropin-releasing factor (CRF) and stress-related reproductive failure: The brain as a state of the art or the ovary as a novel clue?. Journal of Endocrinological Investigation, 1995, 18, 872-880.	3.3	7
123	Arachidonate Metabolites in the Neurophysiological System: The Fever Pathway. , 0, , 463-472.		0