
Julian M Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5306737/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Postural orthostatic tachycardia syndrome: A respiratory disorder?. Current Research in Physiology, 2021, 4, 1-6.	1.7	3
2	Tilt testing remains a valuable asset. European Heart Journal, 2021, 42, 1654-1660.	2.2	50
3	Supine Parasympathetic Withdrawal and Upright Sympathetic Activation Underly Abnormalities of the Baroreflex in Postural Tachycardia Syndrome. Hypertension, 2021, 77, 1234-1244.	2.7	7
4	Postural orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019 National Institutes of Health Expert Consensus Meeting - Part 1. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102828.	2.8	113
5	Postural orthostatic tachycardia syndrome (POTS): Priorities for POTS care and research from a 2019 National Institutes of Health Expert Consensus Meeting – Part 2. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102836.	2.8	30
6	The preponderance of initial orthostatic hypotension in postural tachycardia syndrome. Journal of Applied Physiology, 2020, 129, 459-466.	2.5	6
7	Pacing in vasovagal syncope: Physiology, pacemaker sensors, and recent clinical trials—Precise patient selection and measurable benefit. Heart Rhythm, 2020, 17, 821-828.	0.7	25
8	When Sinus Tachycardia Becomes Too Much. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007744.	4.8	7
9	Postural Orthostatic Tachycardia Syndrome (POTS): A critical assessment. Progress in Cardiovascular Diseases, 2020, 63, 263-270.	3.1	58
10	Mechanisms of tiltâ€induced vasovagal syncope in healthy volunteers and postural tachycardia syndrome patients without past history of syncope. Physiological Reports, 2019, 7, e14148.	1.7	6
11	The Benefits of Oral Rehydration on Orthostatic Intolerance in Children with Postural Tachycardia Syndrome. Journal of Pediatrics, 2019, 214, 96-102.	1.8	13
12	Initial Orthostatic Hypotension Causes (Transient) Postural Tachycardia. Journal of the American College of Cardiology, 2019, 74, 1271-1273.	2.8	9
13	Segmental intracellular, interstitial, and intravascular volume changes during simulated hemorrhage and resuscitation: A case study. Journal of Electrical Bioimpedance, 2019, 10, 40-46.	0.9	2
14	The pathophysiology of the vasovagal response. Heart Rhythm, 2018, 15, 921-929.	0.7	101
15	Pediatric Disorders of Orthostatic Intolerance. Pediatrics, 2018, 141, .	2.1	131
16	A new guideline for diagnosis and treatment of syncope in children and adolescents that stimulates further thought and discussion. Science Bulletin, 2018, 63, 1527-1528.	9.0	10
17	Postural Hyperventilation as a Cause of Postural Tachycardia Syndrome: Increased Systemic Vascular Resistance and Decreased Cardiac Output When Upright in All Postural Tachycardia Syndrome Variants. Journal of the American Heart Association, 2018, 7, .	3.7	34
18	Hemodynamic characteristics of postural hyperventilation: POTS with hyperventilation versus panic versus voluntary hyperventilation. Journal of Applied Physiology, 2018, 125, 1396-1403.	2.5	11

#	Article	IF	CITATIONS
19	Mechanisms of Vasovagal Syncope in the Young: Reduced Systemic Vascular Resistance Versus Reduced Cardiac Output. Journal of the American Heart Association, 2017, 6, .	3.7	44
20	Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H672-H680.	3.2	3
21	Nitric oxide synthase inhibition restores orthostatic tolerance in young vasovagal syncope patients. Heart, 2017, 103, 1711-1718.	2.9	12
22	Decreasing cerebral oxygen consumption during upright tilt in vasovagal syncope. Physiological Reports, 2017, 5, e13286.	1.7	13
23	Postural Heart Rate Changes in Young Patients With Vasovagal Syncope. Pediatrics, 2017, 139, .	2.1	17
24	Bioimpedance monitoring of cellular hydration during hemodialysis therapy. Hemodialysis International, 2017, 21, 575-584.	0.9	9
25	Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Diagnosis and Management in Young People: A Primer. Frontiers in Pediatrics, 2017, 5, 121.	1.9	120
26	Orthostatic Circulatory Disorders: From Nosology to Nuts and Bolts. American Journal of Hypertension, 2016, 29, 1009-1019.	2.0	15
27	Postsynaptic α ₁ -Adrenergic Vasoconstriction Is Impaired in Young Patients With Vasovagal Syncope and Is Corrected by Nitric Oxide Synthase Inhibition. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	4.8	11
28	Cardiac output and vasodilation in the vasovagal response: An analysis of the classic papers. Heart Rhythm, 2016, 13, 798-805.	0.7	57
29	Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H775-H784.	3.2	5
30	2015 Heart Rhythm Society Expert Consensus Statement on the Diagnosis and Treatment of Postural Tachycardia Syndrome, Inappropriate Sinus Tachycardia, and Vasovagal Syncope. Heart Rhythm, 2015, 12, e41-e63.	0.7	694
31	Prospects for Droxidopa in Neurogenic Orthostatic Hypotension. Hypertension, 2015, 65, 34-35.	2.7	4
32	Oscillatory Cerebral Blood Flow Is Associated With Impaired Neurocognition and Functional Hyperemia in Postural Tachycardia Syndrome During Graded Tilt. Hypertension, 2015, 65, 636-643.	2.7	29
33	Excess Nitric Oxide (NO) Blunts Presynaptic Adrenergic Transduction in Orthostatic Intolerance (OI). FASEB Journal, 2015, 29, 831.11.	0.5	0
34	Postâ€Junctional Adrenergic Neurotransmission is Inhibited by Nitric Oxide (NO) in Humans. FASEB Journal, 2015, 29, 649.2.	0.5	0
35	Blunted cerebral blood flow velocity in response to a nitric oxide donor in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H397-H404.	3.2	13
36	A double-blind placebo-controlled cross-over study of the vascular effects of midodrine in neuropathic compared with hyperadrenergic postural tachycardia syndrome. Clinical Science, 2014, 126, 289-296.	4.3	52

#	Article	IF	CITATIONS
37	Reduced Cerebral Blood Flow With Orthostasis Precedes Hypocapnic Hyperpnea, Sympathetic Activation, and Postural Tachycardia Syndrome. Hypertension, 2014, 63, 1302-1308.	2.7	36
38	Altered oscillatory cerebral blood flow velocity and autoregulation in postural tachycardia syndrome. Frontiers in Physiology, 2014, 5, 234.	2.8	17
39	Impact of hypocapnia and cerebral perfusion on orthostatic tolerance. Journal of Physiology, 2014, 592, 5203-5219.	2.9	36
40	Adolescent Fatigue, POTS, and Recovery: A Guide for Clinicians. Current Problems in Pediatric and Adolescent Health Care, 2014, 44, 108-133.	1.7	92
41	Distinguishing features of cardiac-related syncope. Journal of Pediatrics, 2014, 164, 1239-1242.	1.8	1
42	Phenylephrine alteration of cerebral blood flow during orthostasis: effect on <i>n</i> -back performance in chronic fatigue syndrome. Journal of Applied Physiology, 2014, 117, 1157-1164.	2.5	23
43	What is brain fog? An evaluation of the symptom in postural tachycardia syndrome. Clinical Autonomic Research, 2013, 23, 305-311.	2.5	100
44	Common Syndromes of Orthostatic Intolerance. Pediatrics, 2013, 131, 968-980.	2.1	113
45	Disruption of phase synchronization between blood pressure and muscle sympathetic nerve activity in postural vasovagal syncope. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1238-H1245.	3.2	18
46	Modulation of the axon-reflex response to local heat by reactive oxygen species in subjects with chronic fatigue syndrome. Journal of Applied Physiology, 2013, 114, 45-51.	2.5	11
47	Middle cerebral O ₂ delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1576-H1583.	3.2	29
48	Increased cerebral oxygen delivery during sodium nitroprusside administration despite reduced blood flow velocity in the middle cerebral artery. FASEB Journal, 2013, 27, .	0.5	0
49	A questionnaire study to evaluate brain fog in orthostatic intolerance. FASEB Journal, 2013, 27, lb845.	0.5	0
50	Loss of muscle sympathetic nerve activity and blood pressure phase synchronization in postural vasovagal syncope. FASEB Journal, 2013, 27, 926.6.	0.5	0
51	The Arterial Baroreflex Resets with Orthostasis. Frontiers in Physiology, 2012, 3, 461.	2.8	27
52	Update on the theory and management of orthostatic intolerance and related syndromes in adolescents and children. Expert Review of Cardiovascular Therapy, 2012, 10, 1387-1399.	1.5	26
53	Postural neurocognitive and neuronal activated cerebral blood flow deficits in young chronic fatigue syndrome patients with postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1185-H1194.	3.2	53
54	Mechanisms of sympathetic regulation in orthostatic intolerance. Journal of Applied Physiology, 2012, 113, 1659-1668.	2.5	73

#	Article	IF	CITATIONS
55	Increasing orthostatic stress impairs neurocognitive functioning in chronic fatigue syndrome with postural tachycardia syndrome. Clinical Science, 2012, 122, 227-238.	4.3	83
56	Reactive Oxygen Species (ROS) from NADPH and Xanthine Oxidase Modulate the Cutaneous Local Heating Response in Chronic Fatigue Syndrome. FASEB Journal, 2012, 26, 678.10.	0.5	0
57	Shift of the cardiovagal baroreflex response with maintained sensitivity during head up tilt. FASEB Journal, 2012, 26, 1091.27.	0.5	Ο
58	Reactive oxygen species (ROS) from NADPH and xanthine oxidase modulate the cutaneous local heating response in healthy humans. Journal of Applied Physiology, 2011, 111, 20-26.	2.5	53
59	Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Autonomic Neuroscience: Basic and Clinical, 2011, 161, 46-48.	2.8	470
60	"He's Dizzy When He Stands Upâ€: An Introduction to Initial Orthostatic Hypotension. Journal of Pediatrics, 2011, 158, 499-504.	1.8	38
61	Increased Pulsatile Cerebral Blood Flow, Cerebral Vasodilation, and Postsyncopal Headache in Adolescents. Journal of Pediatrics, 2011, 159, 656-662.e1.	1.8	10
62	Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clinical Autonomic Research, 2011, 21, 69-72.	2.5	1,231
63	Ventilatory baroreflex sensitivity in humans is not modulated by chemoreflex activation. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1492-H1500.	3.2	31
64	Baroreceptor unloading in postural tachycardia syndrome augments peripheral chemoreceptor sensitivity and decreases central chemoreceptor sensitivity. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H173-H179.	3.2	24
65	Ascorbate improves circulation in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1033-H1042.	3.2	10
66	Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H527-H540.	3.2	40
67	Cutaneous constitutive nitric oxide synthase activation in postural tachycardia syndrome with splanchnic hyperemia. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H704-H711.	3.2	10
68	Chronic fatigue syndrome: comments on deconditioning, blood volume and resulting cardiac function. Clinical Science, 2010, 118, 121-123.	4.3	13
69	Initial Orthostatic Hypotension in the Young Is Attenuated by Static Handgrip. Journal of Pediatrics, 2010, 156, 1019-1022.e1.	1.8	34
70	Nonlinear phase synchronization changes between SBP and Râ€R interval precede syncope in the young. FASEB Journal, 2010, 24, 1020.15.	0.5	0
71	Baroreflex unloading blunts chemoreceptor sensitivity in Postural Tachycardia Syndrome (POTS). FASEB Journal, 2010, 24, 1026.17.	0.5	0
72	Multiresolution wavelet analysis of time-dependent physiological responses in syncopal youths. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H171-H179.	3.2	23

#	Article	IF	CITATIONS
73	Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H664-H673.	3.2	85
74	Increased phase synchronization and decreased cerebral autoregulation during fainting in the young. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2084-H2095.	3.2	39
75	Defects in Cutaneous Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7) Production in Postural Tachycardia Syndrome. Hypertension, 2009, 53, 767-774.	2.7	54
76	Postural Tachycardia Syndrome and Reflex Syncope: Similarities and Differences. Journal of Pediatrics, 2009, 154, 481-485.	1.8	37
77	Cerebral Autoregulation is affected in Postural Tachycardia Syndrome. FASEB Journal, 2009, 23, 613.1.	0.5	Ο
78	Postural Challenge Accentuates the Autonomic Responses to an Inspiratory Apnea. FASEB Journal, 2009, 23, 786.12.	0.5	0
79	Multiâ€Resolution Wavelet Analysis of Timeâ€dependent Physiological Responses in Syncopal Youths. FASEB Journal, 2009, 23, 786.11.	0.5	Ο
80	Reduced Iron Stores and Its Effect on Vasovagal Syncope (Simple Faint). Journal of Pediatrics, 2008, 153, 9-11.	1.8	10
81	Angiotensin II type 1 receptor blockade corrects cutaneous nitric oxide deficit in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H466-H473.	3.2	40
82	Increased vasoconstriction predisposes to hyperpnea and postural faint. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H372-H381.	3.2	29
83	Intradermal angiotensin II administration attenuates the local cutaneous vasodilator heating response. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H327-H334.	3.2	24
84	Pathophysiology, Diagnosis, and Treatment of Orthostatic Hypotension and Vasovagal Syncope. Cardiology in Review, 2008, 16, 4-20.	1.4	108
85	Cutaneous neuronal nitric oxide is specifically decreased in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2161-H2167.	3.2	75
86	Reduced central blood volume and cardiac output and increased vascular resistance during static handgrip exercise in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1908-H1917.	3.2	14
87	Changes in regional blood volume and blood flow during static handgrip. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H215-H223.	3.2	48
88	Reduced body mass index is associated with increased angiotensin II in young women with postural tachycardia syndrome. Clinical Science, 2007, 113, 449-457.	4.3	30
89	The Postural Tachycardia Syndrome. Cardiology in Review, 2007, 15, 67-75.	1.4	96
90	Differential effects of lower body negative pressure and upright tilt on splanchnic blood volume. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1420-H1426.	3.2	67

#	Article	IF	CITATIONS
91	Noninvasive Measure of Microvascular Nitric Oxide Function in Humans Using Very Low-Frequency Cutaneous Laser Doppler Flow Spectra. Microcirculation, 2007, 14, 169-180.	1.8	38
92	Effects and Interactions of Nitric Oxide and Prostaglandins during Acetylcholine Mediated Cutaneous Vasodilation in Humans. FASEB Journal, 2007, 21, A1298.	0.5	0
93	Differential Effects of Lower Body Negative Pressure and Upright Tilt on Splanchnic Blood Volume. FASEB Journal, 2007, 21, A511.	0.5	0
94	Persistent splanchnic hyperemia during upright tilt in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H665-H673.	3.2	94
95	Increased plasma angiotensin II in postural tachycardia syndrome (POTS) is related to reduced blood flow and blood volume. Clinical Science, 2006, 110, 255-263.	4.3	63
96	Postural hypocapnic hyperventilation is associated with enhanced peripheral vasoconstriction in postural tachycardia syndrome with normal supine blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H904-H913.	3.2	43
97	Reciprocal splanchnic-thoracic blood volume changes during the Valsalva maneuver. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H752-H758.	3.2	13
98	Splanchnic hyperemia and hypervolemia during Valsalva maneuver in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1951-H1959.	3.2	13
99	Plantar vibration improves leg fluid flow in perimenopausal women. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R623-R629.	1.8	78
100	Decreased Microvascular Nitric Oxide–Dependent Vasodilation in Postural Tachycardia Syndrome. Circulation, 2005, 112, 2611-2618.	1.6	66
101	Relation of Postural Vasovagal Syncope to Splanchnic Hypervolemia in Adolescents. Circulation, 2004, 110, 2575-2581.	1.6	64
102	Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2687-H2696.	3.2	151
103	Effects of thoracic blood volume on Valsalva maneuver. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H798-H804.	3.2	22
104	Chronic orthostatic intolerance and the postural tachycardia syndrome (POTS). Journal of Pediatrics, 2004, 145, 725-730.	1.8	99
105	Regional blood volume and peripheral blood flow in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1319-H1327.	3.2	83
106	Decreased skeletal muscle pump activity in patients with postural tachycardia syndrome and low peripheral blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1216-H1222.	3.2	69
107	Microvascular Filtration Is Increased in Postural Tachycardia Syndrome. Circulation, 2003, 107, 2816-2822.	1.6	42
108	Local vascular responses affecting blood flow in postural tachycardia syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2749-H2756.	3.2	60

#	Article	IF	CITATIONS
109	Clinical and Physiological Effects of an Acute α-1 Adrenergic Agonist and a β-1 Adrenergic Antagonist in Chronic Orthostatic Intolerance. Circulation, 2002, 106, 2946-2954.	1.6	66
110	Transient orthostatic hypotension is common in adolescents. Journal of Pediatrics, 2002, 140, 418-424.	1.8	40
111	Orthostatic intolerance in pediatrics. Journal of Pediatrics, 2002, 140, 404-411.	1.8	69
112	Pooling in Chronic Orthostatic Intolerance. Circulation, 2002, 105, 2274-2281.	1.6	122
113	Reflex vascular defects in the orthostatic tachycardia syndrome of adolescents. Journal of Applied Physiology, 2001, 90, 2025-2032.	2.5	37
114	Orthostasis fails to produce active limb venoconstriction in adolescents. Journal of Applied Physiology, 2001, 91, 1723-1729.	2.5	24
115	Orthostatic Intolerance. The Journal of Chronic Fatigue Syndrome: Multidisciplinary Innovations in Researchory and Clinical Practice, 2000, 8, 45-64.	0.4	1
116	Intravenous cannulation of adolescents does not affect the modulation of autonomic tone assessed by heart rate and blood pressure variability. Clinical Autonomic Research, 2000, 10, 7-12.	2.5	4
117	Vascular perturbations in the chronic orthostatic intolerance of the postural orthostatic tachycardia syndrome. Journal of Applied Physiology, 2000, 89, 1505-1512.	2.5	42
118	Autonomic Nervous System Dysfunction in Adolescents with Postural Orthostatic Tachycardia Syndrome and Chronic Fatigue Syndrome Is Characterized by Attenuated Vagal Baroreflex and Potentiated Sympathetic Vasomotion. Pediatric Research, 2000, 48, 218-226.	2.3	176
119	Patterns of orthostatic intolerance: The orthostatic tachycardia syndrome and adolescent chronic fatigue. Journal of Pediatrics, 1999, 135, 218-225.	1.8	105
120	Orthostatic Intolerance in Adolescent Chronic Fatigue Syndrome. Pediatrics, 1999, 103, 116-121.	2.1	132
121	Neurally mediated hypotension and autonomic dysfunction measured by heart rate variability during head-up tilt testing in children with chronic fatigue syndrome. Clinical Autonomic Research, 1998, 8, 221-230.	2.5	57
122	Heart Rate Variability and the Outcome of Head-Up Tilt in Syncopal Children. Pediatric Research, 1996, 40, 702-709.	2.3	31