Kwang-Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5306559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Letter to the Editor. Cell therapy for Parkinson's disease. Journal of Neurosurgery, 2022, 136, 1810-1811.	1.6	1
2	Spotting-based differentiation of functional dopaminergic progenitors from human pluripotent stem cells. Nature Protocols, 2022, , .	12.0	6
3	Integrative analysis of mitochondrial metabolic dynamics in reprogramming human fibroblast cells. STAR Protocols, 2022, 3, 101401.	1.2	0
4	A Pitx3-deficient developmental mouse model for fine motor, olfactory, and gastrointestinal symptoms of Parkinson's disease. Neurobiology of Disease, 2022, 170, 105777.	4.4	3
5	iPSCs and cell therapy for Parkinson's disease. , 2021, , 23-47.		Ο
6	Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1. Experimental and Molecular Medicine, 2021, 53, 19-29.	7.7	14
7	A step closer to autologous cell therapy for Parkinson's disease. Cell Stem Cell, 2021, 28, 595-597.	11.1	5
8	Current reprogramming methods to generate high-quality iPSCs. , 2021, , 1-36.		0
9	SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Reports, 2021, 37, 110155.	6.4	28
10	Columnar Injection for Intracerebral Cell Therapy. Operative Neurosurgery, 2020, 18, 321-328.	0.8	7
11	Toward a Personalized Approach to Parkinson's Cell Therapy. Movement Disorders, 2020, 35, 2119-2120.	3.9	4
12	Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson's Disease. New England Journal of Medicine, 2020, 382, 1926-1932.	27.0	298
13	PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nature Chemical Biology, 2020, 16, 876-886.	8.0	51
14	Human autologous iPSC–derived dopaminergic progenitors restore motor function in Parkinson's disease models. Journal of Clinical Investigation, 2020, 130, 904-920.	8.2	102
15	Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Scientific Reports, 2019, 9, 16928.	3.3	98
16	Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Scientific Reports, 2019, 9, 15559.	3.3	29
17	Nurr1 (NR4A2) regulates Alzheimer's diseaseâ€related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell, 2019, 18, e12866.	6.7	72
18	Maternal and Early Postnatal Immune Activation Produce Dissociable Effects on Neurotransmission in mPFC–Amygdala Circuits. Journal of Neuroscience, 2018, 38, 3358-3372.	3.6	65

#	Article	IF	CITATIONS
19	Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Progress in Neurobiology, 2018, 168, 1-20.	5.7	84
20	Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c–SIRT2 axis. Nature Cell Biology, 2017, 19, 445-456.	10.3	138
21	Toward neuroprotective treatments of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3795-3797.	7.1	18
22	Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism. Journal of Neuroscience, 2017, 37, 7656-7668.	3.6	92
23	Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo. Stem Cells Translational Medicine, 2017, 6, 576-588.	3.3	11
24	Novel function of E26 transformation-specific domain-containing protein ELK3 in lymphatic endothelial cells. Oncology Letters, 2017, 15, 55-60.	1.8	1
25	Early Postnatal but Not Late Adult Neurogenesis Is Impaired in the Pitx3-Mutant Animal Model of Parkinson's Disease. Frontiers in Neuroscience, 2017, 11, 471.	2.8	14
26	MiR-126 Regulates Growth Factor Activities and Vulnerability to Toxic Insult in Neurons. Molecular Neurobiology, 2016, 53, 95-108.	4.0	48
27	LRRK2 interferes with aggresome formation for autophagic clearance. Molecular and Cellular Neurosciences, 2016, 75, 71-80.	2.2	30
28	Daphnane Diterpenes from <i>Daphne genkwa</i> Activate Nurr1 and Have a Neuroprotective Effect in an Animal Model of Parkinson's Disease. Journal of Natural Products, 2016, 79, 1604-1609.	3.0	32
29	4-amino-7-chloroquinoline derivatives for treating Parkinson's disease: implications for drug discovery. Expert Opinion on Drug Discovery, 2016, 11, 337-341.	5.0	18
30	Production of Nurr-1 Specific Polyclonal Antibodies Free of Cross-reactivity Against Its Close Homologs, Nor1 and Nur77. Journal of Visualized Experiments, 2015, , e52963.	0.3	2
31	The RAB39B p.G192R mutation causes X-linked dominant Parkinson's disease. Molecular Neurodegeneration, 2015, 10, 50.	10.8	91
32	Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8756-8761.	7.1	147
33	Induced Pluripotent Stem Cells (iPSCs) to Study and Treat Movement Disorders. , 2015, , 159-170.		0
34	Correlation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5 <scp>XFAD</scp> mice, an animal model of Alzheimer's disease. Journal of Neurochemistry, 2015, 132, 254-262.	3.9	34
35	Increased Genomic Integrity of an Improved Protein-Based Mouse Induced Pluripotent Stem Cell Method Compared With Current Viral-Induced Strategies. Stem Cells Translational Medicine, 2014, 3, 599-609.	3.3	21
36	Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 817-831.	4.8	195

#	Article	IF	CITATIONS
37	Pitx3 deficient mice as a genetic animal model of co-morbid depressive disorder and parkinsonism. Brain Research, 2014, 1552, 72-81.	2.2	18
38	Impact of Circadian Nuclear Receptor REV-ERBÎ \pm on Midbrain Dopamine Production and Mood Regulation. Cell, 2014, 157, 858-868.	28.9	242
39	Functional Roles of Nurr1, Pitx3, and Lmx1a in Neurogenesis and Phenotype Specification of Dopamine Neurons During In Vitro Differentiation of Embryonic Stem Cells. Stem Cells and Development, 2014, 23, 477-487.	2.1	36
40	Molecular and Functional Analyses of Motor Neurons Generated from Human Cord-Blood-Derived Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 3011-3020.	2.1	20
41	Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3281-90.	7.1	217
42	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Potential of Mouse Embryonic Stem Cells Via the <i>Lefty1</i> -Nodal-Smad2 Pathway. Stem Cells, 2013, 31, 282-292.	3.2	30
43	Stem Cell Grafting Improves Both Motor and Cognitive Impairments in a Genetic Model of Parkinson's Disease, the Aphakia (<i>ak</i>) Mouse. Cell Transplantation, 2013, 22, 1263-1279.	2.5	25
44	Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain. Development (Cambridge), 2012, 139, 3136-3141.	2.5	14
45	Development and Differentiation of Autonomic Neurons. , 2012, , 3-8.		2
46	Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Molecular and Cellular Neurosciences, 2011, 46, 245-251.	2.2	15
47	Converting Human Skin Cells to Neurons: A New Tool to Study and Treat Brain Disorders?. Cell Stem Cell, 2011, 9, 179-181.	11.1	15
48	ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9703-9708.	7.1	86
49	Norepinephrine Deficiency Is Caused by Combined Abnormal mRNA Processing and Defective Protein Trafficking of Dopamine 1²-Hydroxylase. Journal of Biological Chemistry, 2011, 286, 9196-9204.	3.4	25
50	Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. Journal of Clinical Investigation, 2011, 121, 2326-2335.	8.2	211
51	Association studies of â^3081(A/T) polymorphism of norepinephrine transporter gene with attention deficit/hyperactivity disorder in Korean population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 691-694.	1.7	21
52	Hemangioblastic Derivatives from Human Induced Pluripotent Stem Cells Exhibit Limited Expansion and Early Senescence. Stem Cells, 2010, 28, 704-712.	3.2	354
53	Direct Reprogramming of Rat Neural Precursor Cells and Fibroblasts into Pluripotent Stem Cells. PLoS ONE, 2010, 5, e9838.	2.5	54
54	Gene transfer in the nervous system and implications for transsynaptic neuronal tracing. Expert Opinion on Biological Therapy, 2010, 10, 763-772.	3.1	19

#	Article	IF	CITATIONS
55	Induced pluripotent stem (iPS) cells and their future in psychiatry. Neuropsychopharmacology, 2010, 35, 346-348.	5.4	15
56	Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Experimental and Molecular Medicine, 2009, 41, 440.	7.7	54
57	Regulation of the tyrosine hydroxylase and dopamine β-hydroxylase genes by the transcription factor AP-2. Journal of Neurochemistry, 2009, 76, 280-294.	3.9	68
58	Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. Journal of Neurochemistry, 2009, 111, 1202-1212.	3.9	47
59	Essential Role for TRPC5 in Amygdala Function and Fear-Related Behavior. Cell, 2009, 137, 761-772.	28.9	245
60	Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell, 2009, 4, 472-476.	11.1	1,685
61	Wnt1-lmx1a Forms a Novel Autoregulatory Loop and Controls Midbrain Dopaminergic Differentiation Synergistically with the SHH-FoxA2 Pathway. Cell Stem Cell, 2009, 5, 646-658.	11.1	172
62	Transcription Factor GATA-3 Regulates the Transcriptional Activity of Dopamine β-Hydroxylase by Interacting with Sp1 and AP4. Neurochemical Research, 2008, 33, 1821-1831.	3.3	28
63	Embryonic Stem Cell-Derived Pitx3-Enhanced Green Fluorescent Protein Midbrain Dopamine Neurons Survive Enrichment by Fluorescence-Activated Cell Sorting and Function in an Animal Model of Parkinson's Disease. Stem Cells, 2008, 26, 1526-1536.	3.2	135
64	Functional Gene Variation in the Human Norepinephrine Transporter. Annals of the New York Academy of Sciences, 2008, 1129, 256-260.	3.8	35
65	Impaired learning and memory in Pitx3 deficient aphakia mice: A genetic model for striatum-dependent cognitive symptoms in Parkinson's disease. Neurobiology of Disease, 2008, 31, 406-412.	4.4	48
66	Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neuroscience Letters, 2008, 442, 190-194.	2.1	34
67	Trim11 increases expression of dopamine β-hydroxylase gene by interacting with Phox2b. Biochemical and Biophysical Research Communications, 2008, 368, 650-655.	2.1	20
68	Regulation of the Noradrenaline Neurotransmitter Phenotype by the Transcription Factor AP-2β. Journal of Biological Chemistry, 2008, 283, 16860-16867.	3.4	35
69	Functional Analysis of Various Promoters in Lentiviral Vectors at Different Stages of In Vitro Differentiation of Mouse Embryonic Stem Cells. Molecular Therapy, 2007, 15, 1630-1639.	8.2	135
70	Antidepressant effect of stem cell-derived monoaminergic grafts. NeuroReport, 2007, 18, 1663-1667.	1.2	4
71	Selection of Embryonic Stem Cell-Derived Enhanced Green Fluorescent Protein-Positive Dopamine Neurons Using the Tyrosine Hydroxylase Promoter Is Confounded by Reporter Gene Expression in Immature Cell Populations. Stem Cells, 2007, 25, 1126-1135.	3.2	59
72	Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. Journal of Neurochemistry, 2007, 104, 071018045431005-???.	3.9	68

#	Article	IF	CITATIONS
73	Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson's disease. Neurobiology of Disease, 2007, 27, 11-23.	4.4	59
74	Commentary: Stem Cell Research Continues in Korea Beyond the Hwang Scandal. Stem Cells, 2007, 25, 1336-1336.	3.2	1
75	Genetic selection of sox1GFPâ€expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. Journal of Neurochemistry, 2006, 97, 1467-1480.	3.9	137
76	Regulation of tyrosine hydroxylase gene expression by retinoic acid receptor. Journal of Neurochemistry, 2006, 98, 386-394.	3.9	32
77	GATA-3 regulates the transcriptional activity of tyrosine hydroxylase by interacting with CREB. Journal of Neurochemistry, 2006, 98, 773-781.	3.9	28
78	Stromal Cell-Derived Inducing Activity, Nurr1, and Signaling Molecules Synergistically Induce Dopaminergic Neurons from Mouse Embryonic Stem Cells. Stem Cells, 2006, 24, 557-567.	3.2	97
79	Neural Precursors Derived from Embryonic Stem Cells, but Not Those from Fetal Ventral Mesencephalon, Maintain the Potential to Differentiate into Dopaminergic Neurons After Expansion In Vitro. Stem Cells, 2006, 24, 1583-1593.	3.2	70
80	Differential actions of the proneural genes encoding Mash1 and neurogenins in Nurr1-induced dopamine neuron differentiation. Journal of Cell Science, 2006, 119, 2310-2320.	2.0	58
81	In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. Journal of Neurochemistry, 2005, 92, 1265-1276.	3.9	265
82	Age-associated changes in mRNA levels of Phox2, norepinephrine transporter and dopamine β-hydroxylase in the locus coeruleus and adrenal glands of rats. Journal of Neurochemistry, 2005, 94, 828-838.	3.9	18
83	Necessary methodological and stem cell advances for restoration of the dopaminergic system in Parkinson's disease patients. , 2005, , 363-380.		Ο
84	3,4-Dihydroxyphenylalanine Reverses the Motor Deficits in Pitx3-Deficient Aphakia Mice: Behavioral Characterization of a Novel Genetic Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 2132-2137.	3.6	162
85	The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Molecular and Cellular Neurosciences, 2005, 28, 241-252.	2.2	138
86	Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation. European Journal of Neuroscience, 2004, 19, 1141-1152.	2.6	70
87	Molecular cloning and characterization of the promoter region of the human Phox2b gene. Molecular Brain Research, 2004, 125, 29-39.	2.3	9
88	Variations in the dopamine ?-hydroxylase gene are not associated with the autonomic disorders, pure autonomic failure, or multiple system atrophy. American Journal of Medical Genetics Part A, 2003, 120A, 234-236.	2.4	13
89	Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cellâ€specific manner. Journal of Neurochemistry, 2003, 85, 622-634.	3.9	186
90	Regulation of the tyrosine hydroxylase gene promoter by histone deacetylase inhibitors. Biochemical and Biophysical Research Communications, 2003, 312, 950-957.	2.1	30

#	Article	IF	CITATIONS
91	Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Molecular Brain Research, 2003, 114, 123-131.	2.3	235
92	Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2344-2349.	7.1	1,126
93	A Proximal Promoter Domain Containing a Homeodomain-Binding Core Motif Interacts with Multiple Transcription Factors, Including HoxA5 and Phox2 Proteins, and Critically Regulates Cell Type-Specific Transcription of the Human Norepinephrine Transporter Gene. Journal of Neuroscience, 2002, 22, 2579-2589	3.6	23
94	Promoterless Luciferase Reporter Gene Is Transactivated by Basic Helix-Loop-Helix Transcription Factors. BioTechniques, 2002, 33, 1236-1240.	1.8	12
95	Mutations in the dopamine ?-hydroxylase gene are associated with human norepinephrine deficiency. American Journal of Medical Genetics Part A, 2002, 108, 140-147.	2.4	88
96	A direct role of the homeodomain proteins Phox2a/2b in noradrenaline neurotransmitter identity determination. Journal of Neurochemistry, 2002, 80, 905-916.	3.9	41
97	Structural and functional characterization of the 5′ upstream promoter of the human Phox2a gene: possible direct transactivation by transcription factor Phox2b. Journal of Neurochemistry, 2002, 79, 1225-1236.	3.9	21
98	Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. European Journal of Neuroscience, 2002, 16, 1829-1838.	2.6	224
99	Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain. Journal of Neurochemistry, 2002, 67, 684-691.	3.9	19
100	Analysis of Different Promoter Systems for Efficient Transgene Expression in Mouse Embryonic Stem Cell Lines. Stem Cells, 2002, 20, 139-145.	3.2	140
101	A Quantitative-Trait Analysis of Human Plasma–Dopamine β-Hydroxylase Activity: Evidence for a Major Functional Polymorphism at the DBH Locus. American Journal of Human Genetics, 2001, 68, 515-522.	6.2	253
102	A High-Efficiency Synthetic Promoter That Drives Transgene Expression Selectively in Noradrenergic Neurons. Human Gene Therapy, 2001, 12, 1731-1740.	2.7	150
103	Title is missing!. Molecular and Cellular Biochemistry, 2000, 212, 51-60.	3.1	49
104	A Previously Undescribed Intron and Extensive 5′ Upstream Sequence, but Not Phox2a-mediated Transactivation, Are Necessary for High Level Cell Type-specific Expression of the Human Norepinephrine Transporter Gene. Journal of Biological Chemistry, 1999, 274, 6507-6518.	3.4	93
105	Noradrenergic-Specific Transcription of the Dopamine β-Hydroxylase Gene Requires Synergy of MultipleCis-Acting Elements Including at Least Two Phox2a-Binding Sites. Journal of Neuroscience, 1998, 18, 8247-8260.	3.6	112
106	The Cellâ€ 5 pecific Silencer Region of the Human Dopamine βâ€Hydroxylase Gene Contains Several Negative Regulatory Elements. Journal of Neurochemistry, 1998, 71, 41-50.	3.9	8
107	Identification and Characterization of Potential <i>cis</i> â€Regulatory Elements Governing Transcriptional Activation of the Rat Tyrosine Hydroxylase Gene. Journal of Neurochemistry, 1998, 71, 1358-1368.	3.9	50
108	<i>Paired</i> â€Like Homeodomain Proteins, Phox2a and Phox2b, Are Responsible for Noradrenergic Cellâ€Specific Transcription of the Dopamine βâ€Hydroxylase Gene. Journal of Neurochemistry, 1998, 71, 1813-1826.	3.9	123

#	Article	IF	CITATIONS
109	Structure/Function Relationship of the cAMP Response Element in Tyrosine Hydroxylase Gene Transcription. Journal of Biological Chemistry, 1997, 272, 19158-19164.	3.4	67
110	Multiple Protein Factors Interact with the cis-Regulatory Elements of the Proximal Promoter in a Cell-Specific Manner and Reg ulate Transcription of the Dopamine b-Hydroxylase Gene. Journal of Neuroscience, 1996, 16, 4102-4112.	3.6	61