Lena Gerwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530598/publications.pdf

Version: 2024-02-01

73 7,216 34 68
papers citations h-index g-index

75 75 75 9742 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Heterologous Expression in <i>Anabaena</i> of the Columbamide Pathway from the Cyanobacterium <i>Moorena bouillonii</i> and Production of New Analogs. ACS Chemical Biology, 2022, 17, 1910-1923.	3.4	7
2	Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. Journal of Natural Products, 2021, 84, 161-182.	3.0	38
3	A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Marine Drugs, 2021, 19, 20.	4.6	19
4	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
5	Portobelamides A and B and Caciqueamide, Cytotoxic Peptidic Natural Products from a Caldora sp. Marine Cyanobacterium. Journal of Natural Products, 2021, 84, 2081-2093.	3.0	2
6	Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte, Derbesia sp., Using MS/MS-Based Molecular Networking. Journal of Natural Products, 2020, 83, 617-625.	3.0	22
7	Heterologous Expression of Cryptomaldamide in a Cyanobacterial Host. ACS Synthetic Biology, 2020, 9, 3364-3376.	3.8	23
8	An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23-3. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1546-1553.	1.3	6
9	MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cell Systems, 2019, 9, 600-608.e4.	6.2	46
10	Cytotoxic Microcolin Lipopeptides from the Marine Cyanobacterium <i>Moorea producens</i> Journal of Natural Products, 2019, 82, 2608-2619.	3.0	23
11	Nature's Combinatorial Biosynthesis Produces Vatiamides A–F. Angewandte Chemie - International Edition, 2019, 58, 9027-9031.	13.8	36
12	Nature's Combinatorial Biosynthesis Produces Vatiamides A–F. Angewandte Chemie, 2019, 131, 9125-9129.	2.0	4
13	Samholides, Swinholide-Related Metabolites from a Marine Cyanobacterium cf. <i>Phormidium</i> sp Journal of Organic Chemistry, 2018, 83, 3034-3046.	3.2	12
14	Bastimolide B, an Antimalarial 24-Membered Marine Macrolide Possessing a <i>tert</i> -Butyl Group. Journal of Natural Products, 2018, 81, 211-215.	3.0	29
15	Biosynthesis of <i>t</i> -Butyl in Apratoxin A: Functional Analysis and Architecture of a PKS Loading Module. ACS Chemical Biology, 2018, 13, 1640-1650.	3.4	21
16	Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway. Journal of Natural Products, 2018, 81, 506-514.	3.0	25
17	Ketoreductase Domain Dysfunction Expands Chemodiversity: Malyngamide Biosynthesis in the Cyanobacterium <i>Okeania hirsuta</i> Cyanobacterium <i>Okeania hirsuta</i>	3.4	25
18	Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria. Methods in Enzymology, 2018, 604, 3-43.	1.0	10

#	Article	IF	Citations
19	Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus $\langle i \rangle$ Moorea $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3198-3203.	7.1	77
20	A Maldiisotopic Approach to Discover Natural Products: Cryptomaldamide, a Hybrid Tripeptide from the Marine Cyanobacterium <i>Moorea producens</i>). Journal of Natural Products, 2017, 80, 1514-1521.	3.0	30
21	A Mononuclear Iron-Dependent Methyltransferase Catalyzes Initial Steps in Assembly of the Apratoxin A Polyketide Starter Unit. ACS Chemical Biology, 2017, 12, 3039-3048.	3.4	22
22	Development of a Potent Inhibitor of the <i>Plasmodium</i> Proteasome with Reduced Mammalian Toxicity. Journal of Medicinal Chemistry, 2017, 60, 6721-6732.	6.4	70
23	Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. ELife, 2017, 6, .	6.0	33
24	A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB. BMC Microbiology, 2016, 16, 198.	3.3	13
25	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	17.5	2,802
26	Anatomy of the \hat{I}^2 -branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10316-10321.	7.1	29
27	The Phormidolide Biosynthetic Gene Cluster: A <i>trans</i> à€AT PKS Pathway Encoding a Toxic Macrocyclic Polyketide. ChemBioChem, 2016, 17, 164-173.	2.6	36
28	Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Natural Product Reports, 2016, 33, 348-364.	10.3	56
29	Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 313-324.	3.0	45
30	Expanding the Described Metabolome of the Marine Cyanobacterium Moorea producens JHB through Orthogonal Natural Products Workflows. PLoS ONE, 2015, 10, e0133297.	2.5	40
31	Combined LC–MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle. Environmental Science & Environmental Science & 2015, 49, 14301-14310.	10.0	55
32	Spongosine Production by a <i>Vibrio harveyi</i> Strain Associated with the Sponge <i>Tectitethya crypta</i> Journal of Natural Products, 2015, 78, 493-499.	3.0	28
33	Isolation of Polycavernoside D from a Marine Cyanobacterium. Environmental Science and Technology Letters, 2015, 2, 166-170.	8.7	22
34	Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria. Journal of Natural Products, 2015, 78, 1671-1682.	3.0	156
35	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
36	Bastimolide A, a Potent Antimalarial Polyhydroxy Macrolide from the Marine Cyanobacterium <i>Okeania hirsuta </i> . Journal of Organic Chemistry, 2015, 80, 7849-7855.	3.2	68

#	Article	IF	CITATIONS
37	Direct Detection of Fungal Siderophores on Bats with White-Nose Syndrome via Fluorescence Microscopy-Guided Ambient Ionization Mass Spectrometry. PLoS ONE, 2015, 10, e0119668.	2.5	30
38	Characterization of Cyanobacterial Hydrocarbon Composition and Distribution of Biosynthetic Pathways. PLoS ONE, 2014, 9, e85140.	2.5	190
39	Real-Time Metabolomics on Living Microorganisms Using Ambient Electrospray Ionization Flow-Probe. Analytical Chemistry, 2013, 85, 7014-7018.	6.5	106
40	Interkingdom signaling by structurally related cyanobacterial and algal secondary metabolites. Phytochemistry Reviews, 2013, 12, 459-465.	6.5	9
41	Examination of the Mode of Action of the Almiramide Family of Natural Products against the Kinetoplastid Parasite <i>Trypanosoma brucei</i> . Journal of Natural Products, 2013, 76, 630-641.	3.0	37
42	Polyketide genes in the marine sponge <i><scp>P</scp>lakortis simplex</i> : a new group of monoâ€modular type <scp>I</scp> polyketide synthases from sponge symbionts. Environmental Microbiology Reports, 2013, 5, 809-818.	2.4	27
43	Structural Basis of Functional Group Activation by Sulfotransferases in Complex Metabolic Pathways. ACS Chemical Biology, 2012, 7, 1994-2003.	3.4	34
44	Differential expression and intrachromosomal evolution of the sghC1q genes in zebrafish (Danio) Tj ETQq0 0 0 rgl	B <u>T</u> /Overlo	ck 10 Tf 50
45	Molecular identification and expression analysis of two distinct BPI/LBPs (bactericidal) Tj ETQq1 1 0.784314 rgBT Shellfish Immunology, 2012, 33, 75-84.	/Overlock 3.6	10 Tf 50 42 18
46	Coibacins A–D, Antileishmanial Marine Cyanobacterial Polyketides with Intriguing Biosynthetic Origins. Organic Letters, 2012, 14, 3878-3881.	4.6	56
47	Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Science, 2012, 21, 239-248.	7.6	32
48	Honaucins Aâ^'C, Potent Inhibitors of Inflammation and Bacterial Quorum Sensing: Synthetic Derivatives and Structure-Activity Relationships. Chemistry and Biology, 2012, 19, 589-598.	6.0	92
49	Evaluation of $\langle i \rangle$ Streptomycesâ \in f coelicolor $\langle i \rangle$ â \in f A3(2) as a heterologous expression host for the cyanobacterial protein kinaseâ \in f C activator lyngbyatoxinâ \in f A. FEBS Journal, 2012, 279, 1243-1251.	4.7	29
50	Effect of xanthopterin and isoxanthopterin on nitric oxide production by a RAW264.7 cell line. FASEB Journal, 2012, 26, 797.9.	0.5	0
51	Malyngamide 2, an Oxidized Lipopeptide with Nitric Oxide Inhibiting Activity from a Papua New Guinea Marine Cyanobacterium. Journal of Natural Products, 2011, 74, 95-98.	3.0	65
52	Phylogeny-Guided Isolation of Ethyl Tumonoate A from the Marine Cyanobacterium cf. <i>Oscillatoria margaritifera</i>). Journal of Natural Products, 2011, 74, 1737-1743.	3.0	29
53	Single Cell Genome Amplification Accelerates Identification of the Apratoxin Biosynthetic Pathway from a Complex Microbial Assemblage. PLoS ONE, 2011, 6, e18565.	2.5	132
54	Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium <i>Lyngbya majuscula </i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8815-8820.	7.1	99

#	Article	IF	CITATIONS
55	Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses. Applied and Environmental Microbiology, 2011, 77, 3617-3625.	3.1	94
56	Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. European Journal of Pharmacology, 2010, 629, 140-146.	3.5	49
57	The C1q domain containing proteins: Where do they come from and what do they do?. Developmental and Comparative Immunology, 2010, 34, 785-790.	2.3	88
58	Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacology and Immunotoxicology, 2010, 32, 228-237.	2.4	125
59	The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Natural Product Reports, 2010, 27, 1048.	10.3	103
60	Metamorphic enzyme assembly in polyketide diversification. Nature, 2009, 459, 731-735.	27.8	165
61	Polyketide Decarboxylative Chain Termination Preceded by <i>O</i> Sulfonation in Curacin A Biosynthesis. Journal of the American Chemical Society, 2009, 131, 16033-16035.	13.7	88
62	Viridamides A and B, Lipodepsipeptides with Antiprotozoal Activity from the Marine Cyanobacterium <i>Oscillatoria nigro-viridis</i> . Journal of Natural Products, 2008, 71, 1544-1550.	3.0	119
63	Giant Marine Cyanobacteria Produce Exciting Potential Pharmaceuticals. Microbe Magazine, 2008, 3, 277-284.	0.4	40
64	Transcriptional studies of a novel family of "short C1q―domain proteins in zebrafish. FASEB Journal, 2008, 22, 558-558.	0.5	0
65	Development of in vitro and in vivo antiâ€inflammatory assays for testing cyanobacterial marine natural products. FASEB Journal, 2008, 22, 537-537.	0.5	0
66	Gene transcript changes in individual rainbow trout livers following an inflammatory stimulus. Fish and Shellfish Immunology, 2007, 22, 157-171.	3.6	134
67	Intracranial injections induce local transcription of a gene encoding precerebellin-like protein. Fish Physiology and Biochemistry, 2005, 31, 363-372.	2.3	9
68	Molecular cloning and characterization of rainbow trout (Oncorhynchus mykiss) CCAAT/enhancer binding protein ?. Immunogenetics, 2003, 55, 253-261.	2.4	11
69	The acute phase response and innate immunity of fish. Developmental and Comparative Immunology, 2001, 25, 725-743.	2.3	390
70	A precerebellin-like protein is part of the acute phase response in rainbow trout, Oncorhynchus mykiss. Developmental and Comparative Immunology, 2000, 24, 597-607.	2.3	47
71	Modulation of stress hormones in rainbow trout by means of anesthesia, sensory deprivation and receptor blockade. Comparative Biochemistry and Physiology Part A, Molecular & Egrative Physiology, 1999, 124, 329-334.	1.8	29
72	K5 2:45 Acute plasma hormonal changes within minutes of acute stress in rainbow trout. Developmental and Comparative Immunology, 1997, 21, 169.	2.3	0

#	Article	IF	CITATIONS
73	KP2 Acute phase proteins in trout. Developmental and Comparative Immunology, 1997, 21, 173.	2.3	O