
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5305534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Ideally Ordered Anodic Porous Alumina by Prepatterning Process Using a Flexible Mold. ECS Journal of Solid State Science and Technology, 2022, 11, 013001.	1.8	3
2	Efficient fabrication of ordered alumina through-hole membranes using a TiO ₂ protective layer prepared by atomic layer deposition. RSC Advances, 2022, 12, 3662-3671.	3.6	5
3	Formation of ideally ordered porous Ga oxide by anodization of pretextured Ga. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, 010603.	1.2	2
4	Nanopillar Polymer Films as Antibacterial Packaging Materials. ACS Applied Nano Materials, 2022, 5, 2578-2591.	5.0	18
5	Preparation of moth-eye structures on curved surfaces by nanoimprinting using anodic porous alumina molds. Japanese Journal of Applied Physics, 2022, 61, 038001.	1.5	4
6	Preparation of ordered nanohole array structures by anodization of prepatterned Cu, Zn, and Ni. RSC Advances, 2022, 12, 6848-6854.	3.6	6
7	Preparation of Ordered Nanohole Arrays with High Aspect Ratios by Anodization of Prepatterned 304 Stainless Steel. Journal of the Electrochemical Society, 2022, 169, 063502.	2.9	7
8	Micro-nano hierarchical pillar array structures prepared on curved surfaces by nanoimprinting using flexible molds from anodic porous alumina and their application to superhydrophobic surfaces. RSC Advances, 2022, 12, 20340-20347.	3.6	8
9	Highly Ordered Anodic Porous Alumina Prepared by Anodization of Al in Extremely Dilute H ₂ SO ₄ . Journal of the Electrochemical Society, 2022, 169, 073504.	2.9	2
10	Pretexturing and Anodization of W for Fabricating Ordered Anodic Porous WO ₃ . Journal of the Electrochemical Society, 2022, 169, 072504.	2.9	5
11	Structure size effect on polymer infiltration in injection molded direct joining. Precision Engineering, 2021, 67, 100-109.	3.4	12
12	Preparation of Ni micropillar arrays with high aspect ratios using anodic porous alumina template and their application to molds for imprinting. RSC Advances, 2021, 11, 2096-2102.	3.6	3
13	Highly Ordered Alumina Through-Hole Membranes Having Reduced Hole Intervals: 30–50 nm. ECS Journal of Solid State Science and Technology, 2021, 10, 013007.	1.8	2
14	Fabrication of metal nanorod arrays using anodic porous alumina mask with elliptical apertures prepared by lattice conversion process. Japanese Journal of Applied Physics, 2021, 60, 010907.	1.5	4
15	SnO ₂ nanofibers prepared by wet spinning using an ordered porous alumina spinneret. Nanotechnology, 2021, 32, 145603.	2.6	6
16	Monodisperse albumin particles fabricated by membrane emulsification using anodic porous alumina. Materials Research Express, 2021, 8, 025003.	1.6	3
17	Highly ordered anodic porous oxides of transition metals fabricated by anodization combined with a pretexturing process. Electrochemistry Communications, 2021, 123, 106916.	4.7	9
18	Formation of ideally ordered porous anodic zirconia by anodization of vacuum deposited Zr on molds, Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39	1.2	2

#	Article	IF	CITATIONS
19	Communication—Fabrication of Li Nanohole Array by Replication Process Using Anodic Porous Alumina Template. Journal of the Electrochemical Society, 2021, 168, 032508.	2.9	3
20	Formation of Functional Optical Device Using Anodic Porous Alumina. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 206-210.	0.2	0
21	Preparation of Monodisperse Nanoparticles by Membrane Emulsification Using Ordered Anodic Porous Alumina and Its Application to Batteries. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2021, 28, 98-102.	0.0	0
22	Preparation of Ordered Anodic Porous Alumina with Single-Nanometer-Order-Size Holes by Atomic Layer Deposition. Langmuir, 2021, 37, 8331-8338.	3.5	5
23	Renewable Superhydrophobic Surfaces Prepared by Nanoimprinting Using Anodic Porous Alumina Molds. Langmuir, 2021, 37, 10573-10578.	3.5	8
24	Template-Free Preparation of Metal Nanowires by Two-Phase Electrolysis Using Cells Composed of Water and Oil Phases. Journal of the Electrochemical Society, 2021, 168, 093502.	2.9	0
25	Self-ordered anodic porous alumina with inter-hole spacing over 1.5 μm. RSC Advances, 2021, 11, 3777-3782.	3.6	18
26	Ideally Ordered Anodic Porous Alumina on Si Substrate Prepared by Anodization of Sputtered Al–Mg Thin Film. ECS Journal of Solid State Science and Technology, 2021, 10, 115002.	1.8	1
27	Fabrication of ideally ordered TiO ₂ through-hole membranes by two-layer anodization. RSC Advances, 2020, 10, 37657-37661.	3.6	6
28	Preparation of multilayered porous alumina hollow spheres by anodization of Al particles. Electrochemistry Communications, 2020, 120, 106848.	4.7	3
29	Preparation of freestanding tubular alumina through-hole membranes by two-layer anodization. Japanese Journal of Applied Physics, 2020, 59, 038002.	1.5	9
30	Preparation of Ordered Porous Alumina Through-Hole Membranes with Large Hole Periods by Two-Layer Anodization. Journal of the Electrochemical Society, 2020, 167, 163502.	2.9	10
31	One-pod preparation of anodic porous alumina molds with tapered holes for moth-eye structures by nanoimprinting. Japanese Journal of Applied Physics, 2019, 58, 068005.	1.5	2
32	Preparation of Polymer Nanofibers with Controlled Diameters by Continuous Spinning Using Ordered Anodic Porous Alumina as Spinneret. Chemistry Letters, 2019, 48, 86-89.	1.3	3
33	Thermal radiation control structure obtained by anisotropic anode etching of Al. , 2019, , .		0
34	Preparation of Monodisperse LiCoO2 Hollow Particles by Membrane Emulsification Using Anodic Porous Alumina. Chemistry Letters, 2018, 47, 551-554.	1.3	4
35	Preparation of renewable antireflection moth-eye surfaces by nanoimprinting using anodic porous alumina molds. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 031802.	1.2	12
36	Preparation of nanoporous alumina hollow spheres with a highly ordered hole arrangement. RSC Advances, 2018, 8, 2041-2047.	3.6	6

Τακαςμι Υαναςισμιτά

#	Article	IF	CITATIONS
37	Preparation of superhydrophobic surfaces with micro/nano alumina molds. RSC Advances, 2018, 8, 36697-36704.	3.6	14
38	Selective through-holing of anodic porous alumina membranes with large area. RSC Advances, 2018, 8, 38455-38460.	3.6	9
39	Efficient Preparation Process for TiO ₂ Through-Hole Membranes with Ordered Hole Arrangements. Journal of the Electrochemical Society, 2018, 165, E763-E767.	2.9	6
40	Anodic porous alumina with elliptical apertures. Electrochemistry Communications, 2018, 96, 61-65.	4.7	10
41	Control of thermal radiation in metal hole array structures formed by anisotropic anodic etching of Al. Optics Express, 2018, 26, 27865.	3.4	8
42	Preparation of ideally ordered through-hole anodic porous alumina membranes by two-layer anodization. Japanese Journal of Applied Physics, 2017, 56, 035202.	1.5	32
43	Optimizing TiO 2 nanotube morphology for enhanced photocatalytic H 2 evolution using single-walled and highly ordered TiO 2 nanotubes decorated with dewetted Au nanoparticles. Electrochemistry Communications, 2017, 79, 46-50.	4.7	33
44	Formation of porous Al particles by anisotropic anodic etching. Electrochemistry Communications, 2017, 78, 26-28.	4.7	7
45	Anodic porous alumina with square holes through lattice conversion of naturally occurring ordered structures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 050602.	1.2	1
46	Tuning of the interval in a nanohole array of anodic porous alumina through deformation of polymer templates. RSC Advances, 2017, 7, 44799-44803.	3.6	2
47	Fabrication of aluminum nanowires by mechanical deformation of Al using anodic porous alumina molds. Materials Express, 2016, 6, 363-366.	0.5	13
48	Polymer lenses with antireflection structures prepared using anodic porous alumina molds. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	21
49	Communication—Formation of Porous Anodic TiO2with Square Nanoholes by Pretexturing Process. Journal of the Electrochemical Society, 2016, 163, E206-E207.	2.9	3
50	Fabrication of Porous Si Particles by Barrel Anode Etching. Chemistry Letters, 2016, 45, 708-710.	1.3	3
51	Two-dimensional photonic crystals based on anodic porous TiO ₂ with ideally ordered hole arrangement. Applied Physics Express, 2016, 9, 102001.	2.4	7
52	(Invited) Preparation of Ordered Anodic Porous Alumina Through-Hole Membrane and Its Applications. ECS Transactions, 2016, 75, 21-26.	0.5	2
53	Fabrication of ideally ordered anodic porous TiO 2 by anodization of pretextured two-layered metals. Electrochemistry Communications, 2016, 72, 100-103.	4.7	18
54	Functional Applications of Ordered Anodic Porous Alumina. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 538-543.	0.2	3

#	Article	IF	CITATIONS
55	Facile preparation of porous alumina through-hole masks for sputtering by two-layer anodization. AIP Advances, 2016, 6, 085108.	1.3	5
56	Surface-enhanced Raman scattering on gold nanowire array formed by mechanical deformation using anodic porous alumina molds. Applied Physics Express, 2015, 8, 062002.	2.4	9
57	Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process. Electrochemistry Communications, 2015, 50, 73-76.	4.7	44
58	Carbon nanofiber arrays from high-aspect ratio polymer pillar prepared by nanoimprinting using anodic porous alumina. Materials Letters, 2015, 160, 235-237.	2.6	13
59	Enlargement of surface area of Al by electrochemical insertion and deinsertion of Li. Electrochemistry Communications, 2015, 59, 13-15.	4.7	4
60	TiO2 hollow spheres with nanoporous structures fabricated by anodization of Ti particles. RSC Advances, 2015, 5, 41830-41834.	3.6	8
61	High-Throughput Fabrication Process for Highly Ordered Through-Hole Porous Alumina Membranes Using Two-Layer Anodization. Electrochimica Acta, 2015, 184, 80-85.	5.2	68
62	Functional Optical Devices Based on Highly Ordered Metal Nanostructures Obtained Using Anodic Porous Alumina. ECS Transactions, 2015, 69, 235-239.	0.5	1
63	2.ã,¢ãƒ«ãƒŸãƒŠãƒŽãƒ>ールã,¢ãƒ¬ãƒ¼ã®æ–°å±•é–<. Electrochemistry, 2015, 83, 1006-1011.	1.4	3
64	Fabrication of highly ordered nanoporous Si with high aspect ratio through prepatterning of Si using porous alumina mask. Japanese Journal of Applied Physics, 2014, 53, 075201.	1.5	4
65	Monodisperse nanoparticles of metal oxides prepared by membrane emulsification using ordered anodic porous alumina. RSC Advances, 2014, 4, 1538-1542.	3.6	17
66	Fabrication of monodisperse particles by nanoimprinting using anodic porous alumina molds. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 011802.	1.2	1
67	Fabrication of polymer antireflection structures by injection molding using ordered anodic porous alumina mold. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 021809.	1.2	14
68	Fabrication of silica moth-eye structures by photo-nanoimprinting using ordered anodic porous alumina molds. Japanese Journal of Applied Physics, 2014, 53, 018002.	1.5	5
69	Functional Applications of Ordered Nanostructures of Anodic Porous Alumina. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 414-419.	0.2	3
70	In situ template synthesis of one-dimensional gold nanoparticle arrays in organic nanowires. RSC Advances, 2013, 3, 16243.	3.6	6
71	Fabrication of Porous Si Particles by Electrochemical Etching. ECS Solid State Letters, 2013, 2, P117-P119.	1.4	4
72	Preparation of Monodisperse Hydrogel Particles by Membrane Emulsification Using Highly Ordered Anodic Porous Alumina. Chemistry Letters, 2013, 42, 1349-1351.	1.3	4

#	Article	IF	CITATIONS
73	Cavity-type hypersonic phononic crystals. New Journal of Physics, 2012, 14, 113032.	2.9	16
74	Fabrication of Ordered Hole Arrays in Anodic Porous Alumina and Its Application to Functional Devices. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 82.	0.2	4
75	Facile and scalable patterning of sublithographic scale uniform nanowires by ultra-thin AAO free-standing membrane. RSC Advances, 2012, 2, 10618.	3.6	22
76	In situ synthesis of composite nanowires consisting of metal nanoparticles in ion-exchangeable polymer matrix using porous alumina templates. Transactions of the Materials Research Society of Japan, 2012, 37, 185-188.	0.2	0
77	Preparation of Uniform-sized Polymer Nanofibers by Extrusive Spinning Using Ordered Anodic Porous Alumina. Chemistry Letters, 2010, 39, 188-189.	1.3	7
78	Anodic Porous Alumina Masks with Checkerboard Pattern. Applied Physics Express, 2010, 3, 015001.	2.4	11
79	Nanoimprinting Process Using Highly Ordered Anodic Porous Alumina. ECS Transactions, 2010, 33, 67-73.	0.5	2
80	Preparation of Antireflection SiO ₂ Structures Based on Nanoimprinting Using Anodic Porous Alumina Molds. Japanese Journal of Applied Physics, 2010, 49, 065202.	1.5	15
81	Fabrication of Monodisperse Polymer Nanoparticles by Membrane Emulsification Using Ordered Anodic Porous Alumina. Langmuir, 2010, 26, 1516-1519.	3.5	45
82	Fabrication of two-dimensional polymer photonic crystals by nanoimprinting using anodic porous alumina mold. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 398-400.	1.2	12
83	Fabrication of Nanohole Array by Anodization of Al and Its Application to Ordered Surfaces. Journal of the Vacuum Society of Japan, 2009, 52, 207-211.	0.3	Ο
84	Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina. Applied Physics Express, 2009, 2, 022001.	2.4	86
85	Ordered Pillar Array Structures of TiO2 by Nanoimprinting Using Anodic Porous Alumina as Molds. Chemistry Letters, 2009, 38, 274-275.	1.3	9
86	Two-Dimensional Photonic Crystal Composed of Ordered Polymer Nanopillar Arrays with High Aspect Ratios Using Anodic Porous Alumina Templates. Applied Physics Express, 2008, 1, 012002.	2.4	10
87	Fabrication of ideally ordered anodic porous alumina with large area by vacuum deposition of Al onto mold. Journal of Vacuum Science & Technology B, 2008, 26, L10.	1.3	10
88	Optimization of antireflection structures of polymer based on nanoimprinting using anodic porous alumina. Journal of Vacuum Science & Technology B, 2008, 26, 1856-1859.	1.3	56
89	Polymer through-hole membrane fabricated by nanoimprinting using metal molds with high aspect ratios. Journal of Vacuum Science & Technology B, 2007, 25, L35-L38.	1.3	28
90	Nanoimprinting Using Highly Ordered Anodic Porous Alumina with Reduced Hole Periods. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 569-571.	0.3	1

#	Article	IF	CITATIONS
91	Patterning of Self-assembled Thin Films Using Vacuum Ultraviolet Irradiation Through Anodic Porous Alumina Mask. Chemistry Letters, 2007, 36, 1266-1267.	1.3	4
92	Antireflection Polymer Surface Using Anodic Porous Alumina Molds with Tapered Holes. Chemistry Letters, 2007, 36, 530-531.	1.3	71
93	Ordered Porous Alumina Geometries and Surface Metals for Surface-Assisted Laser Desorption/Ionization of Biomolecules:Â Possible Mechanistic Implications of Metal Surface Melting. Analytical Chemistry, 2007, 79, 9122-9127.	6.5	59
94	Polymer Through-Hole Membranes with High Aspect Ratios from Anodic Porous Alumina Templates. Japanese Journal of Applied Physics, 2006, 45, L1133-L1135.	1.5	8
95	Nanoimprinting Using Ni Molds Prepared from Highly Ordered Anodic Porous Alumina Templates. Japanese Journal of Applied Physics, 2006, 45, L804-L806.	1.5	36
96	Fabrication of Metal Nanohole Arrays with High Aspect Ratios Using Two-Step Replication of Anodic Porous Alumina. Advanced Materials, 2005, 17, 2241-2243.	21.0	83
97	Carbon Nanotubes with a Triangular Cross-section, Fabricated Using Anodic Porous Alumina as the Template. Advanced Materials, 2004, 16, 429-432.	21.0	82
98	Preparation of Monodisperse SiO2Nanoparticles by Membrane Emulsification Using Ideally Ordered Anodic Porous Alumina. Langmuir, 2004, 20, 554-555.	3.5	57
99	Fabrication of TiO2 Nanoparticles with Triangular Cross Section by Template Processes. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 478-483.	0.2	0
100	Synthesis of Diamond Cylinders with Triangular and Square Cross Sections Using Anodic Porous Alumina Templates. Chemistry Letters, 2002, 31, 976-977.	1.3	12
101	Synthesis of Well-Aligned Diamond Nanocylinders. Advanced Materials, 2001, 13, 247-249.	21.0	133
102	Direct Nanomolding of Semiconductor Single Crystals. Japanese Journal of Applied Physics, 2000, 39, L256-L258.	1.5	9
103	Antireflection Polymer Hole Array Structures by Imprinting Using Metal Molds from Anodic Porous Alumina. Applied Physics Express, 0, 1, 067004.	2.4	43
104	Fabrication of Hollow Spheres with Porous Structures by Anodization of Small Al Particles. Applied Physics Express, 0, 1, 084001.	2.4	7