Jürgen Finsterbusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5304543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Evidence for Spinal Cord Involvement in Placebo Analgesia. Science, 2009, 326, 404-404.	12.6	400
2	Conventions and nomenclature for double diffusion encoding NMR and MRI. Magnetic Resonance in Medicine, 2016, 75, 82-87.	3.0	154
3	Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. Science, 2017, 358, 105-108.	12.6	148
4	Intrinsically organized resting state networks in the human spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18067-18072.	7.1	93
5	A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. Journal of Magnetic Resonance, 2010, 202, 43-56.	2.1	85
6	Spinal Cord–Midbrain Functional Connectivity Is Related to Perceived Pain Intensity: A Combined Spino-Cortical fMRI Study. Journal of Neuroscience, 2015, 35, 4248-4257.	3.6	74
7	Highâ€resolution diffusion tensor imaging with inner fieldâ€ofâ€view EPI. Journal of Magnetic Resonance Imaging, 2009, 29, 987-993.	3.4	72
8	Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord. NeuroImage, 2012, 59, 2307-2315.	4.2	72
9	Investigating resting-state functional connectivity in the cervical spinal cord at 3 T. Neurolmage, 2017, 147, 589-601.	4.2	68
10	Doubleâ€waveâ€vector diffusionâ€weighted imaging reveals microscopic diffusion anisotropy in the living human brain. Magnetic Resonance in Medicine, 2013, 69, 1072-1082.	3.0	66
11	Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 2021, 16, 4611-4632.	12.0	65
12	Combined T2*-weighted measurements of the human brain and cervical spinal cord with a dynamic shim update. Neurolmage, 2013, 79, 153-161.	4.2	50
13	Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nature Communications, 2018, 9, 1220.	12.8	47
14	Diffusion Tensor Imaging in Pediatric Spinal Cord Injury. Spine, 2012, 37, E797-E803.	2.0	46
15	Eddyâ€current compensated diffusion weighting with a single refocusing RF pulse. Magnetic Resonance in Medicine, 2009, 61, 748-754.	3.0	45
16	Mapping measures of microscopic diffusion anisotropy in human brain white matter in vivo with doubleâ€waveâ€vector diffusionâ€weighted imaging. Magnetic Resonance in Medicine, 2015, 73, 773-783.	3.0	45
17	Improving the performance of diffusionâ€weighted inner fieldâ€ofâ€view echoâ€planar imaging based on 2Dâ€Selective radiofrequency excitations by tilting the excitation plane. Journal of Magnetic Resonance Imaging, 2012, 35, 984-992.	3.4	42
18	Diffusion Tensor Imaging of the Normal Pediatric Spinal Cord Using an Inner Field of View Echo-Planar Imaging Sequence. American Journal of Neuroradiology, 2012, 33, 1127-1133.	2.4	40

#	Article	IF	CITATIONS
19	Resting-state brain and spinal cord networks in humans are functionally integrated. PLoS Biology, 2020, 18, e3000789.	5.6	37
20	Detection of microscopic diffusion anisotropy on a wholeâ€body MR system with double wave vector imaging. Magnetic Resonance in Medicine, 2011, 66, 1405-1415.	3.0	33
21	Fastâ€spinâ€echo imaging of inner fieldsâ€ofâ€view with 2Dâ€selective RF excitations. Journal of Magnetic Resonance Imaging, 2010, 31, 1530-1537.	3.4	32
22	A tensor approach to double wave vector diffusion-weighting experiments on restricted diffusion. Journal of Magnetic Resonance, 2008, 195, 23-32.	2.1	31
23	An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magnetic Resonance Imaging, 2014, 32, 433-439.	1.8	30
24	Microscopic diffusion anisotropy in the human brain: Age-related changes. NeuroImage, 2016, 141, 313-325.	4.2	27
25	Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 2021, 8, 219.	5.3	27
26	Microscopic diffusion anisotropy in the human brain: Reproducibility, normal values, and comparison with the fractional anisotropy. NeuroImage, 2015, 109, 283-297.	4.2	23
27	Diffusion Tensor Imaging of the Normal Cervical and Thoracic Pediatric Spinal Cord. American Journal of Neuroradiology, 2016, 37, 2150-2157.	2.4	23
28	Detection of microscopic diffusion anisotropy in human cortical gray matter in vivo with double diffusion encoding. Magnetic Resonance in Medicine, 2019, 81, 1296-1306.	3.0	23
29	Extension of the double-wave-vector diffusion-weighting experiment to multiple concatenations. Journal of Magnetic Resonance, 2009, 198, 174-182.	2.1	21
30	Double-spin-echo diffusion weighting with a modified eddy current adjustment. Magnetic Resonance Imaging, 2010, 28, 434-440.	1.8	21
31	Reduced Field of View Diffusion Tensor Imaging and Fiber Tractography of the Pediatric Cervical and Thoracic Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 452-460.	3.4	21
32	Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord. NeuroImage: Clinical, 2016, 11, 61-67.	2.7	18
33	Functional neuroimaging of inner fields-of-view with 2D-selective RF excitations. Magnetic Resonance Imaging, 2013, 31, 1228-1235.	1.8	17
34	Diffusion Tensor Imaging Assessment of Regional White Matter Changes in the Cervical and Thoracic Spinal Cord in Pediatric Subjects. Journal of Neurotrauma, 2019, 36, 853-861.	3.4	17
35	Brain-spinal cord interaction in long-term motor sequence learning in human: An fMRI study. NeuroImage, 2022, 253, 119111.	4.2	16
36	Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord. NeuroImage: Clinical, 2018, 18, 784-792.	2.7	12

#	Article	IF	CITATIONS
37	The parallel-antiparallel signal difference in double-wave-vector diffusion-weighted MR at short mixing times: A phase evolution perspective. Journal of Magnetic Resonance, 2011, 208, 114-121.	2.1	11
38	Double-wave-vector diffusion-weighting experiments with multiple concatenations at long mixing times. Journal of Magnetic Resonance, 2010, 206, 112-119.	2.1	9
39	Numerical simulations of short-mixing-time double-wave-vector diffusion-weighting experiments with multiple concatenations on whole-body MR systems. Journal of Magnetic Resonance, 2010, 207, 274-282.	2.1	9
40	Apparent Diffusion Coefficient, Fractional Anisotropy and T2 Relaxation Time Measurement. Klinische Neuroradiologie, 2007, 17, 230-238.	0.9	8
41	Cross-term-compensated pulsed-gradient stimulated echo MR with asymmetric gradient pulse lengths. Journal of Magnetic Resonance, 2008, 193, 41-48.	2.1	8
42	Simultaneous functional MRI acquisition of distributed brain regions with high temporal resolution using a 2Dâ€selective radiofrequency excitation. Magnetic Resonance in Medicine, 2015, 73, 683-691.	3.0	8
43	Segmented 2Dâ€selective RF excitations with weighted averaging and flip angle adaptation for MR spectroscopy of irregularly shaped voxel. Magnetic Resonance in Medicine, 2011, 66, 333-340.	3.0	7
44	Identification of ghost artifact using texture analysis in pediatric spinal cord diffusion tensor images. Magnetic Resonance Imaging, 2018, 47, 7-15.	1.8	7
45	Improved diffusion-weighting efficiency of pulsed gradient stimulated echo MR measurements with background gradient cross-term suppression. Journal of Magnetic Resonance, 2008, 191, 282-290.	2.1	6
46	Spatially 2Dâ€selective RF excitations using the PROPELLER trajectory: Basic principles and application to MR spectroscopy of irregularly shaped single voxel. Magnetic Resonance in Medicine, 2011, 66, 1218-1225.	3.0	5
47	Signal scaling improves the signalâ€toâ€noise ratio of measurements with segmented 2Dâ€selective radiofrequency excitations. Magnetic Resonance in Medicine, 2013, 70, 1491-1499.	3.0	3
48	Gradient and stimulated echo (GRASTE) imaging. Magnetic Resonance in Medicine, 2006, 55, 455-459.	3.0	2
49	Generalized MAGSTE with bipolar diffusion-weighting gradient pulses. Journal of Magnetic Resonance, 2009, 199, 214-224.	2.1	2
50	Hadamardâ€encoding combined with twoâ€dimensionalâ€selective radiofrequency excitations for flexible and efficient acquisitions of multiple voxels in MR spectroscopy. Journal of Magnetic Resonance Imaging, 2012, 35, 976-983.	3.4	1
51	Eliminating side excitations in PROPELLERâ€based 2Dâ€selective RF excitations. Magnetic Resonance in Medicine, 2012, 68, 1383-1389.	3.0	1
52	Combining rheology and MRI: Imaging healthy and tumorous brains based on mechanical properties. Magnetic Resonance in Medicine, 2017, 78, 930-940.	3.0	1