Stuart N. Lane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5304438/publications.pdf

Version: 2024-02-01

274 papers 15,142 citations

68 h-index 25787 108 g-index

337 all docs

337 docs citations

times ranked

337

10275 citing authors

#	Article	IF	CITATIONS
1	Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms, 2003, 28, 249-271.	2.5	531
2	The science and practice of river restoration. Water Resources Research, 2015, 51, 5974-5997.	4.2	442
3	Doing flood risk science differently: an experiment in radical scientific method. Transactions of the Institute of British Geographers, 2011, 36, 15-36.	2.9	290
4	Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects. Hydrological Processes, 2006, 20, 1541-1565.	2.6	288
5	Developments in monitoring and modelling small-scale river bed topography. Earth Surface Processes and Landforms, 1994, 19, 349-368.	2.5	259
6	Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Global Change Biology, 2005, 11, 791-809.	9.5	246
7	Investigating the geomorphological potential of freely available and accessible structureâ€fromâ€motion photogrammetry using a smartphone. Earth Surface Processes and Landforms, 2015, 40, 473-486.	2.5	233
8	Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 2019, 44, 4-26.	2.5	233
9	The application of computational fluid dynamics to natural river channels: three-dimensional versus two-dimensional approaches. Geomorphology, 1999, 29, 1-20.	2.6	215
10	Splitting rivers at their seams: bifurcations and avulsion. Earth Surface Processes and Landforms, 2013, 38, 47-61.	2.5	204
11	Flow in meander bends with recirculation at the inner bank. Water Resources Research, 2003, 39, .	4.2	202
12	Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surface Processes and Landforms, 2007, 32, 429-446.	2.5	200
13	Morphology and flow fields of three-dimensional dunes, Rio Paran $ ilde{A}_i$, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	196
14	Linking River Channel Form and Process: Time, Space and Causality Revisited., 1997, 22, 249-260.		180
15	Guidelines on the use of structureâ€fromâ€motion photogrammetry in geomorphic research. Earth Surface Processes and Landforms, 2019, 44, 2081-2084.	2.5	178
16	Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. Photogrammetric Record, 2000, 16, 793-821.	0.4	173
17	Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 2017, 277, 210-227.	2.6	168
18	Role of Bed Discordance at Asymmetrical River Confluences. Journal of Hydraulic Engineering, 2001, 127, 351-368.	1.5	162

#	Article	IF	CITATIONS
19	Numerical simulation of three-dimensional, time-averaged flow structure at river channel confluences. Water Resources Research, 2000, 36, 2731-2746.	4.2	161
20	Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment. Hydrological Processes, 2006, 20, 1567-1583.	2.6	160
21	A comparison of one- and two-dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrological Processes, 2007, 21, 3190-3202.	2.6	159
22	Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery. Water Resources Research, 2004, 40, .	4.2	152
23	Coproducing Flood Risk Knowledge: Redistributing Expertise in Critical †Participatory Modelling'. Environment and Planning A, 2011, 43, 1617-1633.	3.6	150
24	Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, southern Ecuador. Science of the Total Environment, 2001, 278, 239-261.	8.0	148
25	Representation of landscape hydrological connectivity using a topographically driven surface flow index. Water Resources Research, 2009, 45, .	4.2	145
26	Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio Paraná, Argentina. Earth Surface Processes and Landforms, 2007, 32, 155-162.	2.5	144
27	Export of dissolved organic carbon from an upland peatland during storm events: Implications for flux estimates. Journal of Hydrology, 2007, 347, 438-447.	5.4	143
28	Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. International Journal of Remote Sensing, 2003, 24, 795-815.	2.9	141
29	A network-index-based version of TOPMODEL for use with high-resolution digital topographic data. Hydrological Processes, 2004, 18, 191-201.	2.6	140
30	Erosion by an Alpine glacier. Science, 2015, 350, 193-195.	12.6	138
31	The development of an automated correction i;½½procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers. Earth Surface Processes and Landforms, 2000, 25, 209-226.	2.5	135
32	Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model., 1998, 12, 1371-1396.		134
33	The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 2016, 41, 997-1008.	2.5	130
34	Natural flood management. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1211.	6.5	129
35	Three-dimensional measurement of river channel flow processes using acoustic doppler velocimetry. Earth Surface Processes and Landforms, 1998, 23, 1247-1267.	2.5	128
36	The Measurement of River Channel Morphology Using Digital Photogrammetry. Photogrammetric Record, 2000, 16, 937-961.	0.4	127

#	Article	IF	CITATIONS
37	Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments. Earth Surface Processes and Landforms, 2006, 31, 1413-1423.	2.5	119
38	Water table dynamics in undisturbed, drained and restored blanket peat. Journal of Hydrology, 2011, 402, 103-114.	5.4	119
39	Acting, predicting and intervening in a socio-hydrological world. Hydrology and Earth System Sciences, 2014, 18, 927-952.	4.9	117
40	Causes of rapid mixing at a junction of two large rivers: \tilde{RAo} Paran \tilde{A}_i and \tilde{RAo} Paraguay, Argentina. Journal of Geophysical Research, 2008, 113, .	3.3	115
41	Automated extraction of grain-size data from gravel surfaces using digital image processing. Journal of Hydraulic Research/De Recherches Hydrauliques, 2001, 39, 519-529.	1.7	113
42	Assessment of Dem Quality for Characterizing Surface Roughness Using Close Range Digital Photogrammetry. Photogrammetric Record, 1998, 16, 271-291.	0.4	108
43	Morphological Estimation of the Time-Integrated Bed Load Transport Rate. Water Resources Research, 1995, 31, 761-772.	4.2	106
44	Rivers of dreams: on the gulf between theoretical and practical aspects of an upland river restoration. Transactions of the Institute of British Geographers, 2004, 29, 257-281.	2.9	105
45	Hydraulic modelling in hydrology and geomorphology: a review of high resolution approaches. Hydrological Processes, 1998, 12, 1131-1150.	2.6	102
46	Characterization of the Structure of River-Bed Gravels Using Two-Dimensional Fractal Analysis. Mathematical Geosciences, 2001, 33, 301-330.	0.9	102
47	Coherent flow structures in a depthâ€limited flow over a gravel surface: The role of nearâ€bed turbulence and influence of Reynolds number. Journal of Geophysical Research, 2009, 114, .	3.3	102
48	Throughâ€Water Close Range Digital Photogrammetry in Flume and Field Environments. Photogrammetric Record, 2002, 17, 419-439.	0.4	100
49	Biological and chemical factors influencing shallow lake eutrophication: a long-term study. Science of the Total Environment, 2002, 288, 167-181.	8.0	99
50	Evolution and sedimentology of a channel fill in the sandy braided South Saskatchewan River and its comparison to the deposits of an adjacent compound bar. Sedimentology, 2011, 58, 1860-1883.	3.1	99
51	Quantification of braided river channel change using archival digital image analysis. Earth Surface Processes and Landforms, 2010, 35, 971-985.	2.5	94
52	Stormy geomorphology: geomorphic contributions in an age of climate extremes. Earth Surface Processes and Landforms, 2017, 42, 166-190.	2.5	94
53	Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes. Water Resources Research, 2005, 41, .	4.2	93
54	Secondary circulation cells in river channel confluences: measurement artefacts or coherent flow structures?. Hydrological Processes, 2000, 14, 2047-2071.	2.6	90

#	Article	IF	Citations
55	Overland flow velocity and roughness properties in peatlands. Water Resources Research, 2008, 44, .	4.2	90
56	Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology, 2019, 333, 180-197.	2.6	88
57	Two dimensional diffusion wave modelling of flood inundation using a simplified channel representation. International Journal of River Basin Management, 2004, 2, 211-223.	2.7	87
58	Roughness - time for a re-evaluation?. Earth Surface Processes and Landforms, 2005, 30, 251-253.	2.5	85
59	Three-dimensional measurement of river channel flow processes using acoustic doppler velocimetry. Earth Surface Processes and Landforms, 1998, 23, 1247-1267.	2.5	85
60	Large Eddy Simulation of periodic flow characteristics at river channel confluences. Journal of Hydraulic Research/De Recherches Hydrauliques, 2000, 38, 207-215.	1.7	81
61	The link between land-use management and fluvial flood risk. Progress in Physical Geography, 2012, 36, 72-92.	3.2	81
62	Archival photogrammetric analysis of river–floodplain systems using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 2017, 42, 1274-1286.	2.5	81
63	Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel. Geomorphology, 1996, 15, 1-15.	2.6	80
64	Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table drawâ€down. Global Change Biology, 2009, 15, 794-807.	9.5	79
65	A transdisciplinary account of water research. Wiley Interdisciplinary Reviews: Water, 2016, 3, 369-389.	6.5	77
66	Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment. Water Resources Research, 2004, 40, .	4.2	75
67	Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment. Journal of Geophysical Research F: Earth Surface, 2014, 119, 264-286.	2.8	75
68	Editorial: the generation of high quality topographic data for hydrology and geomorphology: new data sources, new applications and new problems. Earth Surface Processes and Landforms, 2003, 28, 229-230.	2.5	74
69	Link between DOC in near surface peat and stream water in an upland catchment. Science of the Total Environment, 2008, 404, 308-315.	8.0	74
70	On the relationship between flow and suspended sediment transport over the crest of a sand dune, $R\tilde{A}f\hat{A}o$ Paran $\tilde{A}f\hat{A}_i$, Argentina. Sedimentology, 2010, 57, 252-272.	3.1	74
71	Laboratory and field assessment of an infrared turbidity probe and its response to particle size and variation in suspended sediment concentration. Hydrological Sciences Journal, 1995, 40, 771-791.	2.6	7 3
72	High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nature Geoscience, 2022, 15, 520-530.	12.9	73

#	Article	IF	CITATIONS
73	The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth-Science Reviews, 2005, 71, 271-304.	9.1	70
74	Developments in photogrammetry; the geomorphological potential. Progress in Physical Geography, 1993, 17, 306-328.	3.2	69
75	High resolution, two-dimensional spatial modelling of flow processes in a multi-thread channel. , 1998, 12, 1279-1298.		69
76	Imagining flood futures: risk assessment and management in practice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1784-1806.	3.4	69
77	Dam builders and their works: Beaver influences on the structure and function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Science Reviews, 2021, 218, 103623.	9.1	69
78	Water yield and sediment export in small, partially glaciated Alpine watersheds in a warming climate. Water Resources Research, 2016, 52, 4924-4943.	4.2	68
79	Mitigating systematic error in topographic models for geomorphic change detection: accuracy, precision and considerations beyond offâ€nadir imagery. Earth Surface Processes and Landforms, 2020, 45, 2251-2271.	2.5	67
80	A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data. Hydrology and Earth System Sciences, 2010, 14, 1567-1579.	4.9	66
81	Solution Scanning as a Key Policy Tool: Identifying Management Interventions to Help Maintain and Enhance Regulating Ecosystem Services. Ecology and Society, 2014, 19, .	2.3	66
82	Limits on the validity of infinite length assumptions for modelling shallow landslides. Earth Surface Processes and Landforms, 2012, 37, 1158-1166.	2.5	65
83	Investigating decadalâ€scale geomorphic dynamics in an alpine mountain setting. Journal of Geophysical Research F: Earth Surface, 2015, 120, 2155-2175.	2.8	64
84	Environmental Impact of Small-scale and Artisanal Gold Mining in Southern Ecuador. Ambio, 2000, 29, 484-491.	5.5	63
85	Reconceptualising coarse sediment delivery problems in rivers as catchment-scale and diffuse. Geomorphology, 2008, 98, 227-249.	2.6	61
86	Constructive comments on D Massey 'Space-time, "science" and the relationship between physical geography and human geography:rsquo;. Transactions of the Institute of British Geographers, 2001, 26, 243-256.	2.9	60
87	Interactions between subgridâ€scale resolution, feature representation and gridâ€scale resolution in flood inundation modelling. Hydrological Processes, 2011, 25, 36-53.	2.6	60
88	Measuring Flume Surfaces for Hydraulics Research Using a Kodak DCS460. Photogrammetric Record, 2001, 17, 39-61.	0.4	59
89	Monitoring River Channel and Flume Surfaces with Digital Photogrammetry. Journal of Hydraulic Engineering, 2001, 127, 871-877.	1.5	59
90	Cost-effective non-metric close-range digital photogrammetry and its application to a study of coarse gravel river beds. International Journal of Remote Sensing, 2003, 24, 2837-2854.	2.9	59

#	Article	IF	CITATIONS
91	The timing and magnitude of coarse sediment transport events within an upland, temperate gravel-bed river. Geomorphology, 2007, 83, 152-182.	2.6	59
92	Can we distinguish flood frequency and magnitude in the sedimentological record of rivers?. Geology, 2010, 38, 579-582.	4.4	59
93	Assessing the credibility of a series of computational fluid dynamic simulations of open channel flow. Hydrological Processes, 2003, 17, 1539-1560.	2.6	58
94	Sensitivity of bed shear stress estimated from vertical velocity profiles: the problem of sampling resolution., 1998, 23, 133-139.		57
95	Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecological Modelling, 2011, 222, 1016-1029.	2.5	57
96	The role of soil in vegetated gravelly river braid plains: more than just a passive response?. Earth Surface Processes and Landforms, 2015, 40, 143-156.	2.5	56
97	High-resolution numerical modelling of three-dimensional flows over complex river bed topography. Hydrological Processes, 2002, 16, 2261-2272.	2.6	55
98	Assessment of rainfall-runoff models based upon wavelet analysis. Hydrological Processes, 2007, 21, 586-607.	2.6	54
99	Does hydrological connectivity improve modelling of coarse sediment delivery in upland environments?. Geomorphology, 2007, 90, 263-282.	2.6	53
100	Suspended sediment transport and deposition over a dune: RÃo Paraná, Argentina. Earth Surface Processes and Landforms, 2009, 34, 1605-1611.	2.5	53
101	An experimental study of discharge partitioning and flow structure at symmetrical bifurcations. Earth Surface Processes and Landforms, 2011, 36, 2069-2082.	2.5	52
102	Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Research, 2002, 36, 3593-3601.	11.3	51
103	Development and testing of a numerical code for treatment of complex river channel topography in three-dimensional CFD models with structured grids. Journal of Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 468-480.	1.7	50
104	Surveillant Science: Challenges for the Management of Rural Environments Emerging from the New Generation Diffuse Pollution Models. Journal of Agricultural Economics, 2006, 57, 239-257.	3.5	49
105	Emergence of coherent flow structures over a gravel surface: A numerical experiment. Water Resources Research, 2007, 43, .	4.2	49
106	Scales and causes of heterogeneity in bars in a large multiâ€channel river: RÃo Paraná, Argentina. Sedimentology, 2014, 61, 1055-1085.	3.1	48
107	Lidar measurement of surface melt for a temperate Alpine glacier at the seasonal and hourly scales. Journal of Glaciology, 2015, 61, 963-974.	2.2	47
108	Temperature signal in suspended sediment export from an Alpine catchment. Hydrology and Earth System Sciences, 2018, 22, 509-528.	4.9	47

#	Article	IF	CITATIONS
109	21st century climate change: where has all the geomorphology gone?. Earth Surface Processes and Landforms, 2013, 38, 106-110.	2.5	46
110	The relationship between Lamb weather types and longâ€term changes in flood frequency, River Eden, UK. International Journal of Climatology, 2012, 32, 1971-1989.	3.5	45
111	Ecosystem impacts of Alpine water intakes for hydropower: the challenge of sediment management. Wiley Interdisciplinary Reviews: Water, 2016, 3, 41-61.	6.5	45
112	Overflowing with Issues: Following the Political Trajectories of Flooding. Environment and Planning C: Urban Analytics and City Science, 2013, 31, 603-618.	1.5	44
113	The role of tributary relative timing and sequencing in controlling large floods. Water Resources Research, 2014, 50, 5444-5458.	4.2	44
114	Slow science, the geographical expedition, and Critical Physical Geography. Canadian Geographer / Geographie Canadien, 2017, 61, 84-101.	1.5	44
115	Coherent flow structures in a depthâ€limited flow over a gravel surface: The influence of surface roughness. Journal of Geophysical Research, 2010, 115, .	3.3	43
116	High-resolution numerical modelling of flowâ€"vegetation interactions. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 775-793.	1.7	43
117	Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes. Photogrammetric Record, 2015, 30, 143-165.	0.4	42
118	Disruption of emergency response to vulnerable populations during floods. Nature Sustainability, 2020, 3, 728-736.	23.7	42
119	Topographic forcing of flow partition and flow structures at river bifurcations. Earth Surface Processes and Landforms, 2012, 37, 666-679.	2.5	41
120	Climate Change Impacts on Sediment Yield and Debrisâ€Flow Activity in an Alpine Catchment. Journal of Geophysical Research F: Earth Surface, 2021, 126, .	2.8	39
121	Basic Equations for Sediment Transport in CFD for Fluvial Morphodynamics. , 2005, , 71-89.		38
122	<scp>F</scp> low structures at an idealized bifurcation: a numerical experiment. Earth Surface Processes and Landforms, 2011, 36, 2083-2096.	2.5	38
123	Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: the Puyango river basin, southern Ecuador. Hydrological Processes, 2003, 17, 3101-3123.	2.6	37
124	Photogrammetric and laser altimetric reconstruction of water levels for extreme flood event analysis. Photogrammetric Record, 2003, 18, 293-307.	0.4	37
125	Deposits of the sandy braided South Saskatchewan River: Implications for the use of modern analogs in reconstructing channel dimensions in reservoir characterization. AAPG Bulletin, 2013, 97, 553-576.	1.5	37
126	Approaching the System-Scale Understanding of Braided River Behaviour., 0,, 107-135.		36

#	Article	IF	CITATIONS
127	The potential of digital filtering of generic topographic data for geomorphological research. Earth Surface Processes and Landforms, 2009, 34, 63-74.	2.5	36
128	The role of discharge variability in determining alluvial stratigraphy. Geology, 2016, 44, 3-6.	4.4	36
129	Large River Channel Confluences. , 2008, , 73-91.		34
130	The spatial and temporal patterns of aggradation in a temperate, upland, gravelâ€bed river. Earth Surface Processes and Landforms, 2009, 34, 1181-1197.	2.5	34
131	Using sediment impact sensors to improve the morphological sediment budget approach for estimating bedload transport rates. Geomorphology, 2010, 119, 125-134.	2.6	34
132	Changes in sediment connectivity following glacial debuttressing in an Alpine valley system. Geomorphology, 2020, 352, 106987.	2.6	33
133	Decadalâ€Scale Climate Forcing of Alpine Glacial Hydrological Systems. Water Resources Research, 2019, 55, 2478-2492.	4.2	32
134	Texture-based image segmentation applied to the quanti?cation of superficial sand in salmonid river gravels. Earth Surface Processes and Landforms, 2005, 30, 121-127.	2.5	31
135	Reduced sediment supply in a fast eroding landscape? A multi-proxy sediment budget of the upper RhÃ'ne basin, Central Alps. Sedimentary Geology, 2018, 375, 105-119.	2.1	31
136	Modelling hydrodynamics in the Rio Paran \tilde{A}_i , Argentina: An evaluation and inter-comparison of reduced-complexity and physics based models applied to a large sand-bed river. Geomorphology, 2012, 169-170, 192-211.	2.6	30
137	Explaining Rapid Transitions in the Practice of Flood Risk Management. Annals of the American Association of Geographers, 2013, 103, 330-342.	3.0	30
138	The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives. Wiley Interdisciplinary Reviews: Water, 2014, 1, 549-560.	6.5	30
139	Groundwater controls on biogeomorphic succession and river channel morphodynamics. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1763-1785.	2.8	29
140	Patchâ€scale representation of vegetation within hydraulic models . Earth Surface Processes and Landforms, 2017, 42, 699-710.	2.5	29
141	Alpine Glacier Shrinkage Drives Shift in Dissolved Organic Carbon Export From Quasi hemostasis to Transport Limitation. Geophysical Research Letters, 2019, 46, 8872-8881.	4.0	29
142	Biogeomorphic feedbacks and the ecosystem engineering of recently deglaciated terrain. Progress in Physical Geography, 2019, 43, 24-45.	3.2	29
143	Making stratigraphy in the Anthropocene: climate change impacts and economic conditions controlling the supply of sediment to Lake Geneva. Scientific Reports, 2019, 9, 8904.	3.3	28
144	Morphological Response of an Alpine Braided Reach to Sediment‣aden Flow Events. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1310-1328.	2.8	27

#	Article	IF	Citations
145	A Monte Carlo approach to the inverse problem of diffuse pollution risk in agricultural catchments. Science of the Total Environment, 2012, 433, 434-449.	8.0	26
146	Introducing Critical Physical Geography. , 2018, , 3-21.		26
147	Quantification of the relation between surface morphodynamics and subsurface sedimentological product in sandy braided rivers. Sedimentology, 2013, 60, 820-839.	3.1	25
148	Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling. Environmental Fluid Mechanics, 2017, 17, 277-301.	1.6	25
149	Modelling of Open Channel Flow through Vegetation. , 2005, , 395-428.		24
150	Impacts of upland open drains upon runoff generation: a numerical assessment of catchmentâ€scale impacts. Hydrological Processes, 2013, 27, 1701-1726.	2.6	24
151	Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth Surface Processes and Landforms, 2019, 44, 953-972.	2.5	24
152	Monitoring Suspended Sediment Dynamics Using MBES. Journal of Hydraulic Engineering, 2010, 136, 45-49.	1.5	23
153	RESERVOIR COMPENSATION RELEASES: IMPACT ON THE MACROINVERTEBRATE COMMUNITY OF THE DERWENT RIVER, NORTHUMBERLAND, UKâ€"A LONGITUDINAL STUDY. River Research and Applications, 2012, 28, 692-702.	1.7	23
154	Organic matter processing and soil evolution in a braided river system. Catena, 2015, 126, 86-97.	5.0	23
155	Flood hazard assessment and mapping in semi-arid piedmont areas: a case study in Beni Mellal, Morocco. Natural Hazards, 2016, 81, 481-511.	3.4	23
156	Revisiting the morphological method in twoâ€dimensions to quantify bedâ€material transport in braided rivers. Earth Surface Processes and Landforms, 2019, 44, 2251-2267.	2.5	23
157	Communicating geomorphology: global challenges for the twenty-first century. Earth Surface Processes and Landforms, 2014, 39, 476-486.	2.5	22
158	Emergent geomorphic–vegetation interactions on a subalpine alluvial fan. Earth Surface Processes and Landforms, 2016, 41, 72-86.	2.5	22
159	Geomorphological activity at a rock glacier front detected with a 3D density-based clustering algorithm. Geomorphology, 2017, 278, 287-297.	2.6	22
160	A Framework for Model Verification and Validation of CFD Schemes in Natural Open Channel Flows., 2005, , 169-192.		21
161	21 Contemporary morphological change in braided gravel-bed rivers: new developments from field and laboratory studies, with particular reference to the influence of riparian vegetation. Developments in Earth Surface Processes, 2007, 11, 557-584.	2.8	21
162	Application of distributed sensitivity analysis to a model of turbulent open channel flow in a natural river channel. Proceedings of the Royal Society A, 1994, 447, 49-63.	0.9	20

#	Article	IF	Citations
163	Time-averaged flow structure in the central region of a stream confluence: a discussion., 1999, 24, 361-367.		20
164	Combined Flow Abstraction and Climate Change Impacts on an Aggrading Alpine River. Water Resources Research, 2018, 54, 223-242.	4.2	20
165	Scales of Variation of Suspended Sediment Concentration and Turbidity in a Glacial Meltwater Stream. Geografiska Annaler, Series A: Physical Geography, 1995, 77, 45-65.	1.5	19
166	Remotely Sensed Topographic Data for River Channel Research: The Identification, Explanation and Management of Error., 2005, , 113-136.		19
167	The sediment budget and dynamics of a deltaâ€canyonâ€lobe system over the Anthropocene timescale: The Rhone River delta, Lake Geneva (Switzerland/France). Sedimentology, 2019, 66, 838-858.	3.1	19
168	Subglacial sediment production and snout marginal ice uplift during the late ablation season of a temperate valley glacier. Earth Surface Processes and Landforms, 2019, 44, 1117-1136.	2.5	19
169	Summer is in winter: Disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Science of the Total Environment, 2019, 650, 2164-2180.	8.0	19
170	Sediment yield over glacial cycles: A conceptual model. Progress in Physical Geography, 2021, 45, 842-865.	3.2	19
171	Scales of Variation of Suspended Sediment Concentration and Turbidity in a Glacial Meltwater Stream. Geografiska Annaler, Series A: Physical Geography, 1995, 77, 45.	1.5	18
172	Ecosystem engineers: Biofilms and the ontogeny of glacier floodplain ecosystems. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1390.	6.5	18
173	The reconstruction of bed material yield and supply histories in gravel-bed streams. Catena, 1997, 30, 183-196.	5.0	17
174	Invalidation of Models and Fitness-for-Purpose: A Rejectionist Approach. Simulation Foundations, Methods and Applications, 2019, , 145-171.	0.1	17
175	Investigating the Effects of DEM Error in Scaling Analysis. Photogrammetric Engineering and Remote Sensing, 2007, 73, 67-78.	0.6	16
176	Modelling Reach-Scale Fluvial Flows. , 2005, , 215-269.		15
177	Reconstruction of subgridâ€scale topographic variability and its effect upon the spatial structure of threeâ€dimensional river flow. Water Resources Research, 2010, 46, .	4.2	15
178	A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions. Water (Switzerland), 2020, 12, 2969.	2.7	15
179	Regimes of primary production and their drivers in Alpine streams. Freshwater Biology, 2021, 66, 1449-1463.	2.4	15
180	Climate change and the summer 2007 floods in the UK. Geography, 2008, 93, 91-97.	0.6	15

#	Article	IF	Citations
181	Climate change and energy policy. Energy Policy, 1997, 25, 923-939.	8.8	14
182	Chapter 22 Impacts of artificial drainage of peatlands on runoff production and water quality. Developments in Earth Surface Processes, 2006, 9, 501-528.	2.8	14
183	Application of a roughnessâ€length representation to parameterize energy loss in 3â€D numerical simulations of large rivers. Water Resources Research, 2012, 48, .	4.2	14
184	Response of a temperate alpine valley glacier to climate change at the decadal scale. Geografiska Annaler, Series A: Physical Geography, 2016, 98, 81-95.	1.5	14
185	Characterization of subglacial marginal channels using 3-D analysis of high-density ground-penetrating radar data. Journal of Glaciology, 2021, 67, 759-772.	2.2	14
186	Learning through Computer Model Improvisations. Science Technology and Human Values, 2013, 38, 678-700.	3.1	13
187	Reflections on the IPCC and global change science: Time for a more (physical) geographical tradition. Canadian Geographer / Geographie Canadien, 2017, 61, 124-135.	1.5	13
188	A framework for using small Unmanned Aircraft Systems (sUASs) and SfM photogrammetry to detect salmonid redds. Ecological Informatics, 2019, 53, 100976.	5.2	13
189	Combining UAV-Based SfM-MVS Photogrammetry with Conventional Monitoring to Set Environmental Flows: Modifying Dam Flushing Flows to Improve Alpine Stream Habitat. Remote Sensing, 2020, 12, 3868.	4.0	13
190	Virtual Engineering. Science and Technology Studies, 2011, 24, 3-22.	0.7	13
191	Subglacial Channels, Climate Warming, and Increasing Frequency of Alpine Glacier Snout Collapse. Geophysical Research Letters, 2021, 48, e2021GL096031.	4.0	13
192	Modeling Macroroughness Contribution to Fish Habitat Suitability Curves. Water Resources Research, 2018, 54, 9306-9320.	4.2	12
193	Hydropower Flushing Events Cause Severe Loss of Macrozoobenthos in Alpine Streams. Water Resources Research, 2019, 55, 10056-10081.	4.2	12
194	Sub-basin and temporal variability of macroinvertebrate assemblages in Alpine streams: when and where to sample?. Hydrobiologia, 2019, 830, 179-200.	2.0	12
195	Parameterisation, Validation and Uncertainty Analysis of CFD Models of Fluvial and Flood Hydraulics in the Natural Environment., 2005,, 193-213.		11
196	Communities of knowledge: Science and flood management in Bangladesh. Environmental Hazards, 2010, 9, 8-25.	2.5	11
197	Evaluation of aDcp processing options for secondary flow identification at river junctions. Earth Surface Processes and Landforms, 2019, 44, 2903-2921.	2.5	11
198	Downscaling Images with Trends Using Multiple-Point Statistics Simulation: An Application to Digital Elevation Models. Mathematical Geosciences, 2020, 52, 145-187.	2.4	11

#	Article	IF	CITATIONS
199	Quantifying the spatial distribution of sediment transport in an experimental gully system using the morphological method. Earth Surface Processes and Landforms, 2021, 46, 1188-1208.	2.5	11
200	Ecohydraulics: A New Interdisciplinary Frontier for CFD., 2005, , 429-460.		10
201	18 Managing the rural landscape. , 2007, , 297-319.		10
202	Influence of Dunes on Channelâ€Scale Flow and Sediment Transport in a Sand Bed Braided River. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005571.	2.8	10
203	Climate change and integrated analysis of mountain geomorphological systems. Geographica Helvetica, 2012, 67, 5-14.	0.8	10
204	Porous Rivers: a New Way of Conceptualising and Modelling River and Floodplain Flows?., 2002,, 425-449.		9
205	Introduction to Statistical Turbulence Modelling for Hydraulic Engineering Flows., 2005,, 91-120.		9
206	Roughness Parameterization in CFD Modelling of Gravel-Bed Rivers. , 2005, , 329-355.		9
207	Testing the influence of topography and material properties on catchmentâ€scale soil moisture patterns using remotely sensed vegetation patterns in a humid temperate catchment, northern Britain. Hydrological Processes, 2013, 27, 1223-1237.	2.6	9
208	Hydrological Drivers of Bedload Transport in an Alpine Watershed. Water Resources Research, 2022, 58, .	4.2	9
209	Numerical Modelling of Floodplain Flow. , 2005, , 271-304.		8
210	Modelling Water Quality Processes in Estuaries. , 2005, , 305-328.		8
211	Computational Fluid Dynamics Modelling for Environmental Hydraulics. , 2005, , 1-15.		8
212	Modelling Wetting and Drying Processes in Hydraulic Models., 2005,, 121-146.		8
213	Continuity and change in environmental systems: the case of shallow lake ecosystems. Progress in Physical Geography, 2001, 25, 178-202.	3.2	7
214	Automated correction of surface obstruction errors in digital surface models using off-the-shelf image processing. Photogrammetric Record, 2006, 21, 373-397.	0.4	7
215	6 River processes. , 2007, , 82-99.		7
216	Biotic drivers of river and floodplain geomorphology – New molecular methods for assessing presentâ€day and past biota. Earth Surface Processes and Landforms, 2018, 43, 333-338.	2.5	7

#	Article	IF	CITATIONS
217	Disentangling human impact from natural controls of sediment dynamics in an Alpine catchment. Earth Surface Processes and Landforms, 2019, 44, 2885-2902.	2.5	7
218	Daily entropy of dissolved oxygen reveals different energetic regimes and drivers among highâ€mountain stream types. Limnology and Oceanography, 2021, 66, 1594-1610.	3.1	7
219	Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers. Journal of Applied Mechanics and Technical Physics, 2019, 60, 1220-1227.	0.5	7
220	Making Mathematical Models Perform in Geographical Space(s)., 2011,, 228-245.		7
221	Centimeter-scale mapping of phototrophic biofilms in glacial forefields using visible band ratios and UAV imagery. International Journal of Remote Sensing, 2022, 43, 4723-4757.	2.9	7
222	What makes a fish (hydrologically) happy? A case for inverse modelling. Hydrological Processes, 2008, 22, 4493-4495.	2.6	6
223	Stormy geomorphology: an introduction to the Special Issue. Earth Surface Processes and Landforms, 2017, 42, 238-241.	2.5	6
224	Critical physical geography. Geography, 2019, 104, 49-53.	0.6	6
225	Optimization of Stereo-matching Algorithms Using Existing DEM Data. Photogrammetric Engineering and Remote Sensing, 2009, 75, 323-333.	0.6	5
226	Towards a Genealogy of Critical Physical Geography. , 2018, , 23-47.		5
227	Editorial: Equality, diversity and the challenges for ESPL. Earth Surface Processes and Landforms, 2021, 46, 3-4.	2.5	5
228	EFFECTIVNESS OF SOIL AND WATER ASSESSMENT TOOL MODEL TO SIMULATE WATER FLOW IN A LARGE AGRICULTURAL COMPLEX WATERSHED: CASE OF BUYO LAKE BASIN, WEST OF COTE D'IVOIRE. Environmental Engineering and Management Journal, 2014, 13, 1735-1742.	0.6	5
229	Introduction to Numerical Methods for Fluid Flow. , 2005, , 147-168.		4
230	Modelling of Sand Deposition in Archaeologically Significant Reaches of the Colorado River in Grand Canyon, USA., 2005,, 357-394.		4
231	Good practice in authoring manuscripts on geomorphology. Earth Surface Processes and Landforms, 2014, 39, 126-132.	2.5	4
232	Editorial 2020 Part II: Data from nowhere?. Earth Surface Processes and Landforms, 2020, 45, 5-10.	2.5	4
233	Explaining changing catastrophe losses. Geography, 2012, 97, 100-104.	0.6	4
234	Fundamental Equations for CFD in River Flow Simulations. , 2005, , 17-49.		3

#	Article	IF	CITATIONS
235	High Resolution Remote Sensing for Understanding Instream Habitat., 0,, 185-204.		3
236	Editorial 2010. Earth Surface Processes and Landforms, 2010, 35, 1-3.	2.5	3
237	The tragedy of the reviewing commons?. Earth Surface Processes and Landforms, 2011, 36, 1-2.	2.5	3
238	Seeking good peer review in geomorphology. Earth Surface Processes and Landforms, 2012, 37, 3-8.	2.5	3
239	ESPL, Open Access and Open Review – time for some reflection. Earth Surface Processes and Landforms, 2014, 39, 1-3.	2.5	3
240	Influence of hydrodynamic regimes on mixing of waters of confluent rivers. Computational Continuum Mechanics, 2018, 11, 354-361.	0.5	3
241	Evaluating interactions between soil drainage and seedling performance in a restoration of Pinus sylvestris woodland, Scotland. Global Ecology and Biogeography, 2001, 10, 147-160.	5.8	2
242	Title is missing!. Mathematical Geosciences, 2003, 35, 347-350.	0.9	2
243	Deadening environmental space. Transactions of the Institute of British Geographers, 2005, 30, 4-7.	2.9	2
244	A coupled sediment routing and lateral migration model for gravelâ€bed rivers. Hydrological Processes, 2011, 25, 1887-1898.	2.6	2
245	Climateâ€driven change in the water sourced by trees in a deâ€glaciating proglacial foreâ€field, Torres del Paine, Chile. Ecohydrology, 2019, 12, e2133.	2.4	2
246	The development of an automated correction Âprocedure for digital photogrammetry for the study of wide, shallow, gravelâ€bed rivers. Earth Surface Processes and Landforms, 2000, 25, 209-226.	2.5	2
247	Continuity and change in environmental systems: the case of shallow lake ecosystems. Progress in Physical Geography, 2001, 25, 178-202.	3.2	2
248	Editorial: Concepts and geography. Geography, 2011, 96, 2-4.	0.6	2
249	In the Wake of the Tsunami: Researching Across Disciplines and Developmental Spaces in Southern Thailand., 0,, 173-196.		2
250	Editorial 2022: Quality not quantity. Earth Surface Processes and Landforms, 2022, 47, 3-4.	2.5	2
251	Restoring morphodynamics downstream from Alpine dams: Development of a geomorphological version of the serial discontinuity concept. Geomorphology, 2022, 402, 108131.	2.6	2
252	ORIC central region calculations. , 0, , .		1

#	Article	IF	CITATIONS
253	Modelling Solute Transport Processes in Free Surface Flow CFD Schemes., 2005,, 51-69.		1
254	Editorial 2017: respond, don't rebut. Earth Surface Processes and Landforms, 2017, 42, 3-4.	2.5	1
255	Hydraulic modelling in hydrology and geomorphology: a review of high resolution approaches. , 0, .		1
256	Hydraulic modelling in hydrology and geomorphology: a review of high resolution approaches. Hydrological Processes, 1998, 12, 1131-1150.	2.6	1
257	Thinking through climate change: an introduction. Geography, 2008, 93, 4-10.	0.6	1
258	The Tipping Point: How little things can make a big difference. Geography, 2011, 96, 34-38.	0.6	1
259	Environmental Science for Environmental Management. Geographical Journal, 1996, 162, 100.	3.1	0
260	The Hydraulics of Open Channel Flow. An Introduction BY HUBERT CHANSONxiv $+$ 495 pp., 24.4 $\tilde{A}-$ 17.2 $\tilde{A}-$ 3.0 cm, ISBN 0 340 74067 1 paperback, \hat{A} £29.99, London, UK: Arnold, 1999. Environmental Conservation, 2000, 27, 312-322.	1.3	0
261	Towards Risk-Based Prediction in Real-World Applications of Complex Hydraulic Models. , 2005, , 461-486.		0
262	CFD for Environmental Design and Management. , 2005, , 487-509.		0
263	Being critical: a reply to Maslin and des Clers. Transactions of the Institute of British Geographers, 2005, 30, 268-270.	2.9	0
264	Editorial: one year onÂ.Â. Earth Surface Processes and Landforms, 2009, 34, 1-2.	2.5	0
265	Geography as a shared project: Royal Geographical Society (with IBG) Medals and Awards ceremony 2012. Geographical Journal, 2012, 178, 279-286.	3.1	0
266	Editorial 2012. Earth Surface Processes and Landforms, 2012, 37, 1-2.	2.5	0
267	Editorial 2013. Earth Surface Processes and Landforms, 2013, 38, 1-2.	2.5	0
268	Editorial 2015. Earth Surface Processes and Landforms, 2015, 40, 1-1.	2.5	0
269	Valorising our research in all its forms . Earth Surface Processes and Landforms, 2016, 41, 3-4.	2.5	0
270	Editorial 2018. Earth Surface Processes and Landforms, 2018, 43, 3-3.	2.5	0

#	Article	IF	CITATIONS
271	Professor Jim Chandler. Photogrammetric Record, 2019, 34, 467-480.	0.4	O
272	Editorial 2019: Is patience a virtue we are progressively losing?. Earth Surface Processes and Landforms, 2019, 44, 3-3.	2.5	0
273	Editorial 2020 Part I: A Tribute to Fiona Kirkby. Earth Surface Processes and Landforms, 2020, 45, 3-4.	2.5	O
274	Virtual water. Geography, 2014, 99, 51-53.	0.6	0