Minh T N Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5304234/publications.pdf Version: 2024-02-01

304743 434195 2,738 34 22 31 citations h-index g-index papers 34 34 34 4364 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Seminars in Cancer Biology, 2022, 80, 340-355.	9.6	51
2	The potential role of exosomal circRNAs in the tumor microenvironment: insights into cancer diagnosis and therapy. Theranostics, 2022, 12, 87-104.	10.0	54
3	The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Frontiers in Digital Health, 2022, 4, 838590.	2.8	9
4	Robust delivery of RIGâ€I agonists using extracellular vesicles for anti ancer immunotherapy. Journal of Extracellular Vesicles, 2022, 11, e12187.	12.2	33
5	Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy. Theranostics, 2022, 12, 3288-3315.	10.0	22
6	Extracellular vesicles and lipoproteins $\hat{a} \in $ Smart messengers of blood cells in the circulation. , 2022, 1, .		6
7	Extracellular vesicleâ€associated organotropic metastasis. Cell Proliferation, 2021, 54, e12948.	5.3	36
8	The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Letters, 2021, 500, 253-262.	7.2	56
9	Essential functions of miRâ€125b in cancer. Cell Proliferation, 2021, 54, e12913.	5.3	44
10	Tiny miRNAs Play a Big Role in the Treatment of Breast Cancer Metastasis. Cancers, 2021, 13, 337.	3.7	13
11	Vacuolin-1 inhibits endosomal trafficking and metastasis via CapZβ. Oncogene, 2021, 40, 1775-1791.	5.9	14
12	Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. Journal of Extracellular Vesicles, 2021, 10, e12057.	12.2	103
13	Targeting RNA editing of antizyme inhibitor 1: A potential oligonucleotide-based antisense therapy for cancer. Molecular Therapy, 2021, 29, 3258-3273.	8.2	13
14	Preface for "Extracellular vesicles in cancer, from signalling mechanisms to therapeutic potential― Seminars in Cancer Biology, 2021, 74, 1-2.	9.6	0
15	New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Seminars in Cancer Biology, 2021, 74, 62-78.	9.6	27
16	Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Seminars in Cancer Biology, 2021, 74, 24-44.	9.6	34
17	Harnessing Extracellular Vesicles from Red Blood Cells for Targeted Delivery of Therapeutic Peptides and RNAs for Leukemia Treatment. Blood, 2021, 138, 3980-3980.	1.4	3
18	MicroRNA-29 specifies age-related differences in the CD8+ TÂcell immune response. Cell Reports, 2021, 37, 109969.	6.4	3

Minh T N Le

#	Article	IF	CITATIONS
19	Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells, 2020, 9, 2191.	4.1	66
20	microRNA exchange via extracellular vesicles in cancer. Cell Proliferation, 2020, 53, e12877.	5.3	32
21	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	12.2	77
22	miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/β-catenin Signaling Regulation. Cells, 2020, 9, 711.	4.1	18
23	Tumorâ€secreted extracellular vesicles promote the activation of cancerâ€associated fibroblasts via the transfer of microRNAâ€125b. Journal of Extracellular Vesicles, 2019, 8, 1599680.	12.2	95
24	Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chemical Communications, 2018, 54, 10878-10881.	4.1	44
25	Efficient RNA drug delivery using red blood cell extracellular vesicles. Nature Communications, 2018, 9, 2359.	12.8	402
26	Red blood cell extracellular vesicles as robust carriers of RNA-based therapeutics. Cell Stress, 2018, 2, 239-241.	3.2	8
27	An RNA-binding Protein, Lin28, Recognizes and Remodels G-quartets in the MicroRNAs (miRNAs) and mRNAs It Regulates. Journal of Biological Chemistry, 2015, 290, 17909-17922.	3.4	32
28	Gene Knockdown by EpCAM Aptamer–siRNA Chimeras Suppresses Epithelial Breast Cancers and Their Tumor-Initiating Cells. Molecular Cancer Therapeutics, 2015, 14, 2279-2291.	4.1	66
29	miR-200–containing extracellular vesicles promote breast cancer cell metastasis. Journal of Clinical Investigation, 2014, 124, 5109-5128.	8.2	368
30	Conserved Regulation of p53 Network Dosage by MicroRNA–125b Occurs through Evolving miRNA–Target Gene Pairs. PLoS Genetics, 2011, 7, e1002242.	3.5	143
31	MicroRNA-125b Promotes Neuronal Differentiation in Human Cells by Repressing Multiple Targets. Molecular and Cellular Biology, 2009, 29, 5290-5305.	2.3	260
32	MicroRNA-125b is a novel negative regulator of p53. Genes and Development, 2009, 23, 862-876.	5.9	571
33	Gene duplication of coagulation factor V and origin of venom prothrombin activator in Pseudonaja textilis snake. Thrombosis and Haemostasis, 2005, 93, 420-429.	3.4	26
34	The Biology and Therapeutic Applications of Red Blood Cell Extracellular Vesicles. , 0, , .		9