
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5303985/publications.pdf Version: 2024-02-01

Οι με Ιλγ

#	Article	IF	CITATIONS
1	A sex/age anomaly in thermal comfort observed in an office worker field study: A menopausal effect?. Indoor Air, 2022, 32, .	2.0	5
2	Application of Gagge's energy balance model to determine humidity-dependent temperature thresholds for healthy adults using electric fans during heatwaves. Building and Environment, 2022, 207, 108437.	3.0	11
3	Quantifying the impact of heat on human physical work capacity; part III: the impact of solar radiation varies with air temperature, humidity, and clothing coverage. International Journal of Biometeorology, 2022, 66, 175-188.	1.3	17
4	Quantifying the impact of heat on human physical work capacity; part II: the observed interaction of air velocity with temperature, humidity, sweat rate, and clothing is not captured by most heat stress indices. International Journal of Biometeorology, 2022, 66, 507-520.	1.3	31
5	Classic and exertional heatstroke. Nature Reviews Disease Primers, 2022, 8, 8.	18.1	128
6	Can heat exposure improve exercise performance?. Journal of Science and Medicine in Sport, 2022, 25, 197.	0.6	0
7	The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions. Lancet Planetary Health, The, 2022, 6, e301-e309.	5.1	27
8	Seasonal Heat Acclimatisation in Healthy Adults: A Systematic Review. Sports Medicine, 2022, 52, 2111-2128.	3.1	19
9	Reply to Marino. Journal of Applied Physiology, 2022, 132, 1319-1319.	1.2	0
10	Influence of sex and biological maturation on the sudomotor response to exercise-heat stress: are girls disadvantaged?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R161-R168.	0.9	2
11	A retrospective analysis to determine if exercise trainingâ€induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation. Experimental Physiology, 2021, 106, 282-289.	0.9	26
12	Normobaric hypoxia does not alter the critical environmental limits for thermal balance during exerciseâ€heat stress. Experimental Physiology, 2021, 106, 359-369.	0.9	4
13	Roundtable on Preseason Heat Safety in Secondary School Athletics: Environmental Monitoring During Activities in the Heat. Journal of Athletic Training, 2021, 56, 362-371.	0.9	12
14	An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity. International Journal of Biometeorology, 2021, 65, 1215-1229.	1.3	51
15	Blunted sweating does not alter the rise in core temperature in people with multiple sclerosis exercising in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R258-R267.	0.9	9
16	Talking about menopause in the workplace. Case Reports in Women's Health, 2021, 30, e00306.	0.2	1
17	Thermoregulation During Pregnancy: a Controlled Trial Investigating the Risk of Maternal Hyperthermia During Exercise in the Heat. Sports Medicine, 2021, 51, 2655-2664.	3.1	10
18	Reply to the "Letter to the editor, regarding : Electric fans: A potential stay-at-home cooling strategy during the COVID-19 pandemic this summer?― Science of the Total Environment, 2021, 773, 145227.	3.9	0

#	Article	IF	CITATIONS
19	Electric fan use for cooling during hot weather: a biophysical modelling study. Lancet Planetary Health, The, 2021, 5, e368-e377.	5.1	52
20	Sex difference in initial thermoregulatory response to dehydrated exercise in the heat. Physiological Reports, 2021, 9, e14947.	0.7	4
21	Caffeine alters thermoregulatory responses to exercise in the heat only in caffeine-habituated individuals: a double-blind placebo-controlled trial. Journal of Applied Physiology, 2021, 131, 1300-1310.	1.2	4
22	Optimal break structures and cooling strategies to mitigate heat stress during a Rugby League match simulation. Journal of Science and Medicine in Sport, 2021, 24, 793-799.	0.6	8
23	Aerobic fitness as a parameter of importance for labour loss in the heat. Journal of Science and Medicine in Sport, 2021, 24, 824-830.	0.6	11
24	A Special Issue on Heat, Health, and Performance in Journal of Science and Medicine in Sport. Journal of Science and Medicine in Sport, 2021, 24, 715-717.	0.6	1
25	Extended post-exercise hyperthermia in athletes with a spinal cord injury. Journal of Science and Medicine in Sport, 2021, 24, 831-836.	0.6	2
26	Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet, The, 2021, 398, 709-724.	6.3	192
27	Hot weather and heat extremes: health risks. Lancet, The, 2021, 398, 698-708.	6.3	469
28	The effect of minimal differences in the skin-to-air vapor pressure gradient at various dry-bulb temperatures on self-paced exercise performance. Journal of Applied Physiology, 2021, 131, 1176-1185.	1.2	8
29	Dynamic thermal perception: A review and agenda for future experimental research. Building and Environment, 2021, 205, 108269.	3.0	31
30	The Change in Core Temperature and Sweating Response during Exercise Are Unaffected by Time of Day within the Wake Period. Medicine and Science in Sports and Exercise, 2021, 53, 1285-1293.	0.2	10
31	Automated Monitoring of Cattle Heat Stress and Its Mitigation. Frontiers in Animal Science, 2021, 2, .	0.8	15
32	Individualized analysis of skin thermosensory thresholds and sensitivity in heat-sensitive people with multiple sclerosis. Temperature, 2021, 8, 21-29.	1.7	4
33	Accuracy of Algorithm to Non-Invasively Predict Core Body Temperature Using the Kenzen Wearable Device. International Journal of Environmental Research and Public Health, 2021, 18, 13126.	1.2	9
34	Thermal Strain During Open-Water Swimming Competition in Warm Water Environments. Frontiers in Physiology, 2021, 12, 785399.	1.3	1
35	Ad libitum water consumption off-sets the thermal and cardiovascular strain exacerbated by dehydration during a 3-h simulated heatwave. European Journal of Applied Physiology, 2020, 120, 391-399.	1.2	14
36	Independent Influence of Skin Temperature on Whole-Body Sweat Rate. Medicine and Science in Sports and Exercise, 2020, 52, 2423-2429.	0.2	6

#	Article	IF	CITATIONS
37	Electric fans: A potential stay-at-home cooling strategy during the COVID-19 pandemic this summer?. Science of the Total Environment, 2020, 747, 141180.	3.9	16
38	Sustainable solutions to mitigate occupational heat strain – an umbrella review of physiological effects and global health perspectives. Environmental Health, 2020, 19, 95.	1.7	47
39	Cold and hungry: combined effects of low temperature and resource scarcity on an edgeâ€ofâ€range temperate primate, the golden snubâ€nose monkey. Ecography, 2020, 43, 1672-1682.	2.1	12
40	Simplicity lacks robustness when projecting heat-health outcomes in a changing climate. Nature Communications, 2020, 11, 6079.	5.8	77
41	Aluminium salt-based antiperspirant coated prosthesis liners do not suppress local sweating during moderate intensity exercise in hot and temperate conditions. Journal of Science and Medicine in Sport, 2020, 23, 1128-1133.	0.6	1
42	Identification of factors important to study quality in exercise performance studies. Journal of Science and Medicine in Sport, 2020, 23, 782-787.	0.6	1
43	Considerations for the development of extreme heat policies in sport and exercise. BMJ Open Sport and Exercise Medicine, 2020, 6, e000774.	1.4	6
44	Steadyâ€state sweating during exercise is determined by the evaporative requirement for heat balance independently of absolute core and skin temperatures. Journal of Physiology, 2020, 598, 2607-2619.	1.3	21
45	Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. International Journal of Sport Nutrition and Exercise Metabolism, 2020, 30, 83-98.	1.0	31
46	Do tattoos impair sweating?. Journal of Science and Medicine in Sport, 2019, 22, 1173-1174.	0.6	3
47	Thermoregulatory adaptations with progressive heat acclimation are predominantly evident in uncompensable, but not compensable, conditions. Journal of Applied Physiology, 2019, 127, 1095-1106.	1.2	22
48	Heat and health: a forthcoming Lancet Series. Lancet, The, 2019, 394, 551-552.	6.3	11
49	A Preliminary Study of the Effect of Dousing and Foot Immersion on Cardiovascular and Thermal Responses to Extreme Heat. JAMA - Journal of the American Medical Association, 2019, 322, 1411.	3.8	29
50	Listening to motivational music mitigates heat-related reductions in exercise performance. Physiology and Behavior, 2019, 208, 112567.	1.0	2
51	Brief in-play cooling breaks reduce thermal strain during football in hot conditions. Journal of Science and Medicine in Sport, 2019, 22, 912-917.	0.6	19
52	The Biophysics of Human Heat Exchange. , 2019, , 29-43.		4
53	Fanning as an alternative to air conditioning – A sustainable solution for reducing indoor occupational heat stress. Energy and Buildings, 2019, 193, 92-98.	3.1	32
54	The Effects of Electric Fan Use Under Differing Resting Heat Index Conditions: A Clinical Trial. Annals of Internal Medicine, 2019, 171, 675.	2.0	51

#	Article	IF	CITATIONS
55	Impaired Thermoregulatory Function during Dynamic Exercise in Multiple Sclerosis. Medicine and Science in Sports and Exercise, 2019, 51, 395-404.	0.2	10
56	Response. Medicine and Science in Sports and Exercise, 2019, 51, 2426-2426.	0.2	1
57	Independent Influence of Spinal Cord Injury Level on Thermoregulation during Exercise. Medicine and Science in Sports and Exercise, 2019, 51, 1710-1719.	0.2	20
58	Temperature of water ingested before exercise alters the onset of physiological heat loss responses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R13-R20.	0.9	7
59	Core temperature is not elevated at rest in people with relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 29, 62-67.	0.9	1
60	Partitional calorimetry. Journal of Applied Physiology, 2019, 126, 267-277.	1.2	75
61	Self-paced exercise performance in the heat with neck cooling, menthol application, and abdominal cooling. Journal of Science and Medicine in Sport, 2019, 22, 371-377.	0.6	7
62	Heat stress and fetal risk. Environmental limits for exercise and passive heat stress during pregnancy: a systematic review with best evidence synthesis. British Journal of Sports Medicine, 2019, 53, 799-805.	3.1	39
63	Australian community sport extreme heat policies: Limitations and opportunities for improvement. Journal of Science and Medicine in Sport, 2018, 21, 544-548.	0.6	13
64	Human Physiology in the Heat. SpringerBriefs in Medical Earth Sciences, 2018, , 15-27.	0.3	0
65	Use of physiological evidence for heatwave public policy. Lancet Planetary Health, The, 2018, 2, e10.	5.1	5
66	Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery. Journal of Science and Medicine in Sport, 2018, 21, 1079-1084.	0.6	11
67	Does Cold Water or Ice Slurry Ingestion During Exercise Elicit a Net Body Cooling Effect in the Heat?. Sports Medicine, 2018, 48, 17-29.	3.1	54
68	Optimal cooling strategies for players in Australian Tennis Open conditions. Journal of Science and Medicine in Sport, 2018, 21, 232-237.	0.6	28
69	Thermoeffector Responses at a Fixed Rate of Heat Production in Heart Failure Patients. Medicine and Science in Sports and Exercise, 2018, 50, 417-426.	0.2	10
70	Maximum Skin Wettedness after Aerobic Training with and without Heat Acclimation. Medicine and Science in Sports and Exercise, 2018, 50, 299-307.	0.2	53
71	Cold Water Ingestion Improves Exercise Tolerance of Heat-Sensitive People with MS. Medicine and Science in Sports and Exercise, 2018, 50, 643-648.	0.2	18
72	Thermoregulatory dysfunction in multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 701-714.	1.0	15

#	Article	IF	CITATIONS
73	Folic acid supplementation improves vascular endothelial function, yet not skin blood flow during exercise in the heat, in patients with heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R810-R819.	0.9	4
74	Temperature sensitivity in multiple sclerosis: An overview of its impact on sensory and cognitive symptoms. Temperature, 2018, 5, 208-223.	1.7	55
75	Folic acid supplementation does not attenuate thermoregulatory or cardiovascular strain of older adults exposed to extreme heat and humidity. Experimental Physiology, 2018, 103, 1123-1131.	0.9	8
76	Nutrientâ€specific compensation for seasonal cold stress in a freeâ€ranging temperate colobine monkey. Functional Ecology, 2018, 32, 2170-2180.	1.7	41
77	The Sweating and Core Temperature Response to Compensable and Uncompensable Heat Stress Following Heat Acclimation. FASEB Journal, 2018, 32, 590.16.	0.2	1
78	In-Play Cooling Interventions for Simulated Match-Play Tennis in Hot/Humid Conditions. Medicine and Science in Sports and Exercise, 2017, 49, 991-998.	0.2	32
79	Afferent thermosensory function in relapsing–remitting multiple sclerosis following exerciseâ€induced increases in body temperature. Experimental Physiology, 2017, 102, 887-893.	0.9	24
80	Heart Failure and Thermoregulatory Control: Can Patients With Heart Failure Handle the Heat?. Journal of Cardiac Failure, 2017, 23, 621-627.	0.7	20
81	Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?. Experimental Physiology, 2017, 102, 202-213.	0.9	28
82	Sustained increases in skin blood flow are not a prerequisite to initiate sweating during passive heat exposure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R140-R148.	0.9	6
83	Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Applied Physiology, Nutrition and Metabolism, 2017, 42, 834-840.	0.9	17
84	Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity. Medicine and Science in Sports and Exercise, 2017, 49, 2333-2342.	0.2	30
85	Staying warm in the cold with a hot drink: The role of visceral thermoreceptors. Temperature, 2017, 4, 123-125.	1.7	7
86	Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia. Journal of Applied Physiology, 2017, 122, 1198-1207.	1.2	8
87	Longer exercise duration delays post-exercise recovery of cardiac parasympathetic but not sympathetic indices. European Journal of Applied Physiology, 2017, 117, 1897-1906.	1.2	15
88	Evidence of viscerallyâ€mediated coldâ€defence thermoeffector responses in man. Journal of Physiology, 2017, 595, 1201-1212.	1.3	17
89	Warm hands, cold heart: progressive wholeâ€body cooling increases warm thermosensitivity of human hands and feet in a doseâ€dependent fashion. Experimental Physiology, 2017, 102, 100-112.	0.9	15
90	The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity. International Journal of Biometeorology, 2017, 61, 313-323.	1.3	14

#	Article	IF	CITATIONS
91	The optimal exercise intensity for the unbiased comparison of thermoregulatory responses between groups unmatched for body size during uncompensable heat stress. Physiological Reports, 2017, 5, e13099.	0.7	21
92	Some problems with translating the insulating effect of obesity from mice to men. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E638-E638.	1.8	6
93	Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat. Medicine and Science in Sports and Exercise, 2016, 48, 114-122.	0.2	59
94	Altered thermoregulatory responses in heart failure patients exercising in the heat. Physiological Reports, 2016, 4, e13022.	0.7	20
95	Electric fan use in heat waves: Turn on or turn off?. Temperature, 2016, 3, 358-360.	1.7	10
96	To drink or to pour: How should athletes use water to cool themselves?. Temperature, 2016, 3, 191-194.	1.7	16
97	Cardiac and Thermal Strain of Elderly Adults Exposed to Extreme Heat and Humidity With and Without Electric Fan Use. JAMA - Journal of the American Medical Association, 2016, 316, 989.	3.8	27
98	Occupational heat stress in Australian workplaces. Temperature, 2016, 3, 394-411.	1.7	46
99	Body temperature mapping in critically ill newborn infants nursed under radiant warmers during intensive care. Journal of Perinatology, 2016, 36, 540-543.	0.9	6
100	Submaximal exercise intensity modulates acute post-exercise heart rate variability. European Journal of Applied Physiology, 2016, 116, 697-706.	1.2	55
101	A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. Journal of Applied Physiology, 2016, 120, 615-623.	1.2	53
102	Biophysical aspects of human thermoregulation during heat stress. Autonomic Neuroscience: Basic and Clinical, 2016, 196, 3-13.	1.4	154
103	Exercising In The Heat Disrupts Human Heat Balance In Heart Failure Patients. Medicine and Science in Sports and Exercise, 2016, 48, 562.	0.2	0
104	Comparing Changes In Core Temperature Between Groups Differing Greatly In Body Morphology During Exercise In An Uncompensable Environment. Medicine and Science in Sports and Exercise, 2015, 47, 491.	0.2	1
105	Aerobic fitness and body fatness describe minimal variability in the thermoregulatory responses to exercise after accounting for heat production and body size. Extreme Physiology and Medicine, 2015, 4, .	2.5	0
106	The influence of body morphology on changes in core temperature during exercise in an uncompensable environment. Extreme Physiology and Medicine, 2015, 4, A143.	2.5	1
107	Heart Rate and Body Temperature Responses to Extreme Heat and Humidity With and Without Electric Fans. JAMA - Journal of the American Medical Association, 2015, 313, 724.	3.8	71
108	Active video games and energy balance in male adolescents: a randomized crossover trial. American Journal of Clinical Nutrition, 2015, 101, 1126-1134.	2.2	24

#	Article	IF	CITATIONS
109	A new approach for comparing thermoregulatory responses of subjects with different body sizes. Temperature, 2015, 2, 42-43.	1.7	17
110	Isolating the independent influence of body fat on thermoregulatory responses to exercise. European Journal of Applied Physiology, 2015, 115, 1601-1602.	1.2	0
111	Consensus recommendations on training and competing in the heat. British Journal of Sports Medicine, 2015, 49, 1164-1173.	3.1	195
112	Consensus Recommendations on Training and Competing in the Heat. Sports Medicine, 2015, 45, 925-938.	3.1	70
113	On the Maintenance of Human Heat Balance during Cold and Warm Fluid Ingestion. Medicine and Science in Sports and Exercise, 2015, 47, 1316-1317.	0.2	2
114	Author's Reply to Brocherie and Millet: †Is the Wet-Bulb Globe Temperature (WGBT) Index Relevant for Exercise in the Heat?'. Sports Medicine, 2015, 45, 1623-1624.	3.1	6
115	Explained variance in the thermoregulatory responses to exercise: the independent roles of biophysical and fitness/fatness-related factors. Journal of Applied Physiology, 2015, 119, 982-989.	1.2	79
116	Acute acetaminophen ingestion does not alter core temperature or sweating during exercise in hot–humid conditions. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 96-103.	1.3	12
117	Autonomic dysfunction in multiple sclerosis: Implications for exercise. Autonomic Neuroscience: Basic and Clinical, 2015, 188, 82-85.	1.4	35
118	Effects of elevated core temperature and normoxic 30% nitrous oxide on human ventilation during short duration, high intensity exercise. Respiratory Physiology and Neurobiology, 2015, 206, 19-24.	0.7	2
119	Should electric fans be used during a heat wave?. Applied Ergonomics, 2015, 46, 137-143.	1.7	48
120	Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area. Journal of Applied Physiology, 2014, 116, 1123-1132.	1.2	131
121	Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. Journal of Applied Physiology, 2014, 116, 1088-1095.	1.2	53
122	Assessing neonatal heat balance and physiological strain in newborn infants nursed under radiant warmers in intensive care with fentanyl sedation. European Journal of Applied Physiology, 2014, 114, 2539-2549.	1.2	6
123	Running economy, not aerobic fitness, independently alters thermoregulatory responses during treadmill running. Journal of Applied Physiology, 2014, 117, 1451-1459.	1.2	35
124	Unravelling the true influences of fitness and sex on sweating during exercise. Experimental Physiology, 2014, 99, 1265-1266.	0.9	16
125	Maximum Heat Loss Potential Is Lower in Football Linemen During an NCAA Summer Training Camp Because of Lower Self-Generated Air Flow. Journal of Strength and Conditioning Research, 2014, 28, 1656-1663.	1.0	24
126	Do greater rates of body heat storage precede the accelerated reduction of self-paced exercise intensity in the heat?. European Journal of Applied Physiology, 2014, 114, 2399-2410.	1.2	13

#	Article	IF	CITATIONS
127	Thermoregulatory dysfunction in multiple sclerosis patients during moderate exercise in a thermoneutral environment (1104.17). FASEB Journal, 2014, 28, 1104.17.	0.2	8
128	The independent Influence of aerobic fitness and running economy on thermoregulation during running (1104.3). FASEB Journal, 2014, 28, 1104.3.	0.2	0
129	Relative exercise intensity and core temperature in lean and obese children. Journal of Pediatrics, 2013, 163, 1535-1536.	0.9	3
130	Thermometry, Calorimetry, and Mean Body Temperature during Heat Stress. , 2013, 3, 1689-1719.		195
131	Skin temperature over the carotid artery provides an accurate noninvasive estimation of core temperature in infants and young children during general anesthesia. Paediatric Anaesthesia, 2013, 23, 1109-1116.	0.6	17
132	The evaporative requirement for heat balance determines wholeâ€body sweat rate during exercise under conditions permitting full evaporation. Journal of Physiology, 2013, 591, 2925-2935.	1.3	156
133	Accidental overheating of a newborn under an infant radiant warmer: a lesson for future use. Journal of Perinatology, 2013, 33, 738-739.	0.9	8
134	A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate. Journal of Applied Physiology, 2013, 114, 816-823.	1.2	69
135	Sweating Is Greater in NCAA Football Linemen Independently of Heat Production. Medicine and Science in Sports and Exercise, 2012, 44, 244-252.	0.2	31
136	Compensatory hyperhidrosis following thoracic sympathectomy: a biophysical rationale. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R352-R356.	0.9	21
137	Dissociating Biophysical and Training-Related Determinants of Core Temperature. Exercise and Sport Sciences Reviews, 2012, 40, 183.	1.6	3
138	Local sweating on the forehead, but not forearm, is influenced by aerobic fitness independently of heat balance requirements during exercise. Experimental Physiology, 2012, 97, 572-582.	0.9	35
139	Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. Acta Physiologica, 2012, 206, 98-108.	1.8	42
140	Quantifying heat balance components in neonates nursed under radiant warmers in neonatal intensive care. FASEB Journal, 2012, 26, lb743.	0.2	1
141	Comments on Point:Counterpoint: Humans do/do not demonstrate selective brain cooling during hyperthermia. Journal of Applied Physiology, 2011, 110, 575-580.	1.2	9
142	Does summer in a humid continental climate elicit an acclimatization of human thermoregulatory responses?. European Journal of Applied Physiology, 2011, 111, 1197-1205.	1.2	41
143	Describing individual variation in local sweating during exercise in a temperate environment. European Journal of Applied Physiology, 2011, 111, 1599-1607.	1.2	36
144	Large differences in peak oxygen uptake do not independently alter changes in core temperature and sweating during exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R832-R841.	0.9	114

#	Article	IF	CITATIONS
145	Calorimetric Evidence for an Exercise Intensity Dependent Increase in the Level of Postexercise Hyperthermia. Medicine and Science in Sports and Exercise, 2010, 42, 803-804.	0.2	1
146	Heat balance and cumulative heat storage during exercise performed in the heat in physically active younger and middle-aged men. European Journal of Applied Physiology, 2010, 109, 81-92.	1.2	24
147	Heat exposure in the Canadian workplace. American Journal of Industrial Medicine, 2010, 53, 842-853.	1.0	74
148	Aural Canal, Esophageal, and Rectal Temperatures During Exertional Heat Stress and the Subsequent Recovery Period. Journal of Athletic Training, 2010, 45, 157-163.	0.9	49
149	Estimating changes in volume-weighted mean body temperature using thermometry with an individualized correction factor. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R387-R394.	0.9	6
150	Heat stress in older individuals and patients with common chronic diseases. Cmaj, 2010, 182, 1053-1060.	0.9	396
151	Last Word on Viewpoint: Current evidence does not support an anticipatory regulation of exercise intensity mediated by rate of body heat storage. Journal of Applied Physiology, 2009, 107, 635-635.	1.2	1
152	Current evidence does not support an anticipatory regulation of exercise intensity mediated by rate of body heat storage. Journal of Applied Physiology, 2009, 107, 630-631.	1.2	29
153	Improving the prediction of sweat losses during exercise. Journal of Applied Physiology, 2009, 107, 375-376.	1.2	8
154	Core temperature differences between males and females during intermittent exercise: physical considerations. European Journal of Applied Physiology, 2009, 105, 453-461.	1.2	48
155	The Effect of Exercise Training on Resting Metabolic Rate in Type 2 Diabetes Mellitus. Medicine and Science in Sports and Exercise, 2009, 41, 1558-1565.	0.2	24
156	Differences between Sexes in Rectal Cooling Rates after Exercise-Induced Hyperthermia. Medicine and Science in Sports and Exercise, 2009, 41, 1633-1639.	0.2	39
157	Heat Balance and Cumulative Heat Storage during Intermittent Bouts of Exercise. Medicine and Science in Sports and Exercise, 2009, 41, 588-596.	0.2	35
158	Influence of adiposity on cooling efficiency in hyperthermic individuals. European Journal of Applied Physiology, 2008, 104, 67-74.	1.2	26
159	Sex-related differences in evaporative heat loss: the importance of metabolic heat production. European Journal of Applied Physiology, 2008, 104, 821-829.	1.2	69
160	Physical work capacity in older adults: Implications for the aging worker. American Journal of Industrial Medicine, 2008, 51, 610-625.	1.0	237
161	Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?. Applied Physiology, Nutrition and Metabolism, 2008, 33, 682-689.	0.9	7
162	Human heat balance during postexercise recovery: separating metabolic and nonthermal effects. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1586-R1592.	0.9	19

#	Article	IF	CITATIONS
163	Hyperthermia Modifies the Nonthermal Contribution to Postexercise Heat Loss Responses. Medicine and Science in Sports and Exercise, 2008, 40, 513-522.	0.2	27
164	Calorimetric Measurement of Postexercise Net Heat Loss and Residual Body Heat Storage. Medicine and Science in Sports and Exercise, 2008, 40, 1629-1636.	0.2	57
165	Menstrual cycle and oral contraceptive use do not modify postexercise heat loss responses. Journal of Applied Physiology, 2008, 105, 1156-1165.	1.2	15
166	Sex-Related Differences in Dynamic Heat Balance: Metabolic Heat Production Considerations. Medicine and Science in Sports and Exercise, 2008, 40, S336.	0.2	1
167	Sex-related Differences In Cooling Rates After Exercise-induced Hyperthermia. Medicine and Science in Sports and Exercise, 2008, 40, S336.	0.2	0
168	Sex Differences In Human Heat Balance At The Same Intermittent Work Loads. Medicine and Science in Sports and Exercise, 2008, 40, S336.	0.2	0
169	Heat Balance Is Attained During Postexercise Recovery Despite Residual Body Heat Storage. Medicine and Science in Sports and Exercise, 2008, 40, S337.	0.2	0
170	The effects of hyperthermia and hypoxia on ventilation during low-intensity steady-state exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R195-R203.	0.9	27
171	Sex differences in postexercise esophageal and muscle tissue temperature response. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1632-R1640.	0.9	40
172	A three-compartment thermometry model for the improved estimation of changes in body heat content. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R167-R175.	0.9	67
173	Estimating changes in mean body temperature for humans during exercise using core and skin temperatures is inaccurate even with a correction factor. Journal of Applied Physiology, 2007, 103, 443-451.	1.2	66
174	Postexercise Heat Loss and Hemodynamic Responses during Head-down Tilt Are Similar between Genders. Medicine and Science in Sports and Exercise, 2007, 39, 1308-1314.	0.2	14
175	Disturbance of thermal homeostasis following dynamic exercise. Applied Physiology, Nutrition and Metabolism, 2007, 32, 818-831.	0.9	26
176	The Determination of Changes in Body Heat Content during Exercise Using Calorimetry and Thermometry. Journal of the Human-Environment System, 2007, 10, 19-29.	0.2	33
177	Human face-only immersion in cold water reduces maximal apnoeic times and stimulates ventilation. Experimental Physiology, 2007, 92, 197-206.	0.9	22
178	Evidence of a greater onset threshold for sweating in females following intense exercise. European Journal of Applied Physiology, 2007, 101, 487-493.	1.2	25
179	15° Head-down tilt attenuates the postexercise reduction in cutaneous vascular conductance and sweating and decreases esophageal temperature recovery time. Journal of Applied Physiology, 2006, 101, 840-847.	1.2	27
180	Differences in finger skin contact cooling response between an arterial occlusion and a vasodilated condition. Journal of Applied Physiology, 2006, 100, 1596-1601.	1.2	10

#	Article	IF	CITATIONS
181	The combined effects of local contact force and lower arm cooling upon cutaneous blood cell velocity of the fingertip. European Journal of Applied Physiology, 2006, 97, 332-339.	1.2	2
182	Postexercise hypotension causes a prolonged perturbation in esophageal and active muscle temperature recovery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R580-R588.	0.9	35
183	Temperature Limit Values For Touching Cold Surfaces with the Fingertip. Annals of Occupational Hygiene, 2006, 50, 851-62.	1.9	32
184	Maximum effort breath-hold times for males and females of similar pulmonary capacities during sudden face-only immersion at water temperatures from OÂto 33°C. Applied Physiology, Nutrition and Metabolism, 2006, 31, 549-556.	0.9	9
185	Skin Cooling on Contact with Cold Materials: The Effect of Blood Flow During Short-term Exposures. Annals of Occupational Hygiene, 2004, 48, 129-37.	1.9	8
186	Finger skin cooling on contact with cold materials: a comparison between male and female responses during short-term exposures. European Journal of Applied Physiology, 2004, 91, 373-381.	1.2	30