
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530382/publications.pdf Version: 2024-02-01

SUDINDA RUNYAVANICH

#	Article	IF	CITATIONS
1	Multiscale study of the oral and gut environments in children with high- and low-threshold peanut allergy. Journal of Allergy and Clinical Immunology, 2022, 150, 714-720.e2.	2.9	10
2	Examination of host genetic effects on nasal microbiome composition. Journal of Allergy and Clinical Immunology, 2022, 150, 1232-1236.	2.9	5
3	Advancing Food Allergy Through Omics Sciences. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 119-129.	3.8	13
4	Peanut oral food challenges and subsequent feeding of peanuts in infants. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1756-1758.e1.	3.8	2
5	Peanut-induced food protein–induced enterocolitis syndrome (FPIES) in infants with early peanut introduction. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2117-2119.	3.8	25
6	Network study of nasal transcriptome profiles reveals master regulator genes of asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 879-893.	2.9	22
7	The Effect of Age on T-Regulatory Cell Number and Function in Patients With Asthma. Allergy, Asthma and Immunology Research, 2021, 13, 646.	2.9	3
8	Current insights into the genetics of food allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 15-28.	2.9	40
9	Relationship of <i>Pneumocystis</i> antibody responses to paediatric asthma severity. BMJ Open Respiratory Research, 2021, 8, e000842.	3.0	8
10	Merged Affinity Network Association Clustering: Joint multi-omic/clinical clustering to identify disease endotypes. Cell Reports, 2021, 35, 108975.	6.4	12
11	The nasal microbiome, nasal transcriptome, and pet sensitization. Journal of Allergy and Clinical Immunology, 2021, 148, 244-249.e4.	2.9	8
12	Comparison of dietary intake between milkâ€allergic and nonâ€foodâ€allergic children. Pediatric Allergy and Immunology, 2021, 32, 1872-1876.	2.6	3
13	The airway microbiome and pediatric asthma. Current Opinion in Pediatrics, 2021, 33, 639-647.	2.0	12
14	Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nature Communications, 2021, 12, 4854.	12.8	42
15	Multidimensional study of the oral microbiome, metabolite, and immunologic environment in peanut allergy. Journal of Allergy and Clinical Immunology, 2021, 148, 627-632.e3.	2.9	33
16	Machine learning–driven identification of early-life air toxic combinations associated with childhood asthma outcomes. Journal of Clinical Investigation, 2021, 131, .	8.2	9
17	Racial, ethnic, and socioeconomic differences in adolescent food allergy. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 336-338.e3.	3.8	9
18	Endotoxin, food allergen sensitization, and food allergy: A complementary epidemiologic and experimental study. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 625-635.	5.7	16

#	Article	IF	CITATIONS
19	Bronchoscopy in severe childhood asthma: Irresponsible or irreplaceable?. Pediatric Pulmonology, 2020, 55, 795-802.	2.0	11
20	Dual transcriptomic and epigenomic study of reaction severity in peanut-allergic children. Journal of Allergy and Clinical Immunology, 2020, 145, 1219-1230.	2.9	44
21	Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nature Microbiology, 2020, 5, 166-180.	13.3	75
22	Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. The Lancet Digital Health, 2020, 2, e516-e525.	12.3	218
23	Microbiome and food allergy. , 2020, , 145-156.		Ο
24	Emerging Food Allergy Biomarkers. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2516-2524.	3.8	21
25	Racial/Ethnic Variation in Nasal Gene Expression of Transmembrane Serine Protease 2 (<i>TMPRSS2</i>). JAMA - Journal of the American Medical Association, 2020, 324, 1567.	7.4	45
26	Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA - Journal of the American Medical Association, 2020, 323, 2427.	7.4	680
27	Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI Insight, 2020, 5, .	5.0	44
28	Children with severe persistent asthma have disparate peripheral blood and lower airway eosinophil levels. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2494-2496.	3.8	7
29	Not so sweet: True chocolate and cocoa allergy. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2868-2871.	3.8	3
30	Leveraging -omics for asthma endotyping. Journal of Allergy and Clinical Immunology, 2019, 144, 13-23.	2.9	73
31	NeTFactor, a framework for identifying transcriptional regulators of gene expression-based biomarkers. Scientific Reports, 2019, 9, 12970.	3.3	12
32	Network analysis reveals causal key driver genes of severe asthma in children. Journal of Allergy and Clinical Immunology, 2019, 143, AB186.	2.9	5
33	Food allergy: could the gut microbiota hold the key?. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 201-202.	17.8	36
34	Microbial Adjuncts for Food Allergen Immunotherapy. Current Allergy and Asthma Reports, 2019, 19, 25.	5.3	14
35	Perceived Versus Actual Aeroallergen Sensitization in Urban Children. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1591-1598.e4.	3.8	3
36	Food allergy and the microbiome: Current understandings and future directions. Journal of Allergy and Clinical Immunology, 2019, 144, 1468-1477.	2.9	118

#	Article	IF	CITATIONS
37	The gut microbiome in food allergy. Annals of Allergy, Asthma and Immunology, 2019, 122, 276-282.	1.0	99
38	Role of the Microbiome in Food Allergy. Current Allergy and Asthma Reports, 2018, 18, 27.	5.3	54
39	Earlyâ€life gut microbiome and egg allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1515-1524.	5.7	151
40	The nasal microbiome in asthma. Journal of Allergy and Clinical Immunology, 2018, 142, 834-843.e2.	2.9	111
41	A prospective microbiomeâ€wide association study of food sensitization and food allergy in early childhood. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 145-152.	5.7	163
42	Prenatal Diet and the Development of Childhood Allergic Diseases: Food for Thought. Current Allergy and Asthma Reports, 2018, 18, 58.	5.3	10
43	Intestinal microbial-derived sphingolipids are inversely associated with childhood food allergy. Journal of Allergy and Clinical Immunology, 2018, 142, 335-338.e9.	2.9	37
44	Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature Genetics, 2018, 50, 1072-1080.	21.4	106
45	A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data. Scientific Reports, 2018, 8, 8826.	3.3	51
46	The microbiome in allergic disease: Current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. Journal of Allergy and Clinical Immunology, 2017, 139, 1099-1110.	2.9	264
47	The Nasal Microbiome in Asthma. Journal of Allergy and Clinical Immunology, 2017, 139, AB180.	2.9	3
48	Partially hydrolyzed whey formula intolerance in cow's milk allergic patients. Pediatric Allergy and Immunology, 2017, 28, 401-405.	2.6	11
49	Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nature Communications, 2017, 8, 1943.	12.8	64
50	SkÅ,ad mikrobiomu jelit we wczesnym okresie życia a ustÄ™powanie alergii na biaÅ,ka mleka. Alergologia Polska - Polish Journal of Allergology, 2016, 3, T69-T81.	0.0	0
51	Epinephrine autoinjector prescribing patterns in an urban pediatric population. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 989-990.	3.8	7
52	Early-life gut microbiome composition and milk allergy resolution. Journal of Allergy and Clinical Immunology, 2016, 138, 1122-1130.	2.9	307
53	Prenatal, perinatal, and childhood vitamin D exposure and their association with childhood allergic rhinitis and allergic sensitization. Journal of Allergy and Clinical Immunology, 2016, 137, 1063-1070.e2.	2.9	58
54	Allergic rhinitis: the "Ghost Diagnosis―in patients with asthma. Asthma Research and Practice, 2015, 1, 8.	2.4	35

#	Article	IF	CITATIONS
55	Profile of a milk-allergic patient who tolerated partially hydrolyzed whey formula. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 116-118.	3.8	3
56	Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. Journal of Allergy and Clinical Immunology, 2015, 136, 885-892.e2.	2.9	51
57	Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics, 2015, 47, 1449-1456.	21.4	529
58	Use of Inhaled Corticosteroids among Hispanics in the United States. Annals of the American Thoracic Society, 2015, 12, 241-242.	3.2	1
59	Systems biology of asthma and allergic diseases: AÂmultiscale approach. Journal of Allergy and Clinical Immunology, 2015, 135, 31-42.	2.9	121
60	Peanut, milk, and wheat intake during pregnancy is associated with reduced allergy and asthma in children. Journal of Allergy and Clinical Immunology, 2014, 133, 1373-1382.	2.9	121
61	Peanut allergy prevalence among school-age children in a US cohort not selected for any disease. Journal of Allergy and Clinical Immunology, 2014, 134, 753-755.	2.9	96
62	Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis. BMC Medical Genomics, 2014, 7, 48.	1.5	63
63	A Twin Study of Early-Childhood Asthma in Puerto Ricans. PLoS ONE, 2013, 8, e68473.	2.5	9
64	Geneâ€byâ€environment effect of house dust mite on purinergic receptor P2Y12 (<i>P2RY12</i>) and lung function in children with asthma. Clinical and Experimental Allergy, 2012, 42, 229-237.	2.9	32
65	A metaâ€analysis of Th2 pathway genetic variants and risk for allergic rhinitis. Pediatric Allergy and Immunology, 2011, 22, 378-387.	2.6	21
66	Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma. Clinical and Molecular Allergy, 2011, 9, 1.	1.8	67
67	The Impact of Climate Change on Child Health. Academic Pediatrics, 2003, 3, 44-52.	1.7	113