Lena Wilfert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5303420/publications.pdf

Version: 2024-02-01

361413 361022 1,414 41 20 35 citations h-index g-index papers 49 49 49 1904 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. ISME Journal, 2016, 10, 1264-1273.	9.8	147
2	REVIEW: Emerging viral disease risk to pollinating insects: ecological, evolutionary and anthropogenic factors. Journal of Applied Ecology, 2015, 52, 331-340.	4.0	132
3	Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Sociaux, 2001, 48, 202-215.	1.2	124
4	The genetic architecture of susceptibility to parasites. BMC Evolutionary Biology, 2008, 8, 187.	3.2	92
5	Knockâ€on community impacts of a novel vector: spillover of emerging DWVâ€B from <i>Varroa</i> â€infested honeybees to wild bumblebees. Ecology Letters, 2019, 22, 1306-1315.	6.4	68
6	Cuticular Hydrocarbons and Aggression in the Termite Macrotermes Subhyalinus. Journal of Chemical Ecology, 2004, 30, 365-385.	1.8	66
7	A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae. BMC Genomics, 2011, 12, 48.	2.8	57
8	Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae). BMC Genetics, 2009, 10, 75.	2.7	50
9	Rhabdoviruses in Two Species of Drosophila: Vertical Transmission and a Recent Sweep. Genetics, 2011, 188, 141-150.	2.9	45
10	Natural variation in the genetic architecture of a host-parasite interaction in the bumblebeeBombus terrestris. Molecular Ecology, 2007, 16, 1327-1339.	3.9	40
11	Emerging Viruses in Bees: From Molecules to Ecology. Advances in Virus Research, 2018, 101, 251-291.	2.1	35
12	Condition-dependent virulence of slow bee paralysis virus in Bombus terrestris: are the impacts of honeybee viruses in wild pollinators underestimated?. Oecologia, 2017, 184, 305-315.	2.0	34
13	THE GENETIC ARCHITECTURE OF IMMUNE DEFENSE AND REPRODUCTION IN MALE BOMBUS TERRESTRIS BUMBLEBEES. Evolution; International Journal of Organic Evolution, 2007, 61, 804-815.	2.3	33
14	Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162381.	2.6	32
15	A novel approach to wildlife transcriptomics provides evidence of diseaseâ€mediated differential expression and changes to the microbiome of amphibian populations. Molecular Ecology, 2018, 27, 1413-1427.	3.9	32
16	THE DYNAMICS OF RECIPROCAL SELECTIVE SWEEPS OF HOST RESISTANCE AND A PARASITE COUNTER-ADAPTATION IN <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 2013, 67, 761-773.	2.3	31
17	A genotypic tradeâ€off between constitutive resistance to viral infection and host growth rate. Evolution; International Journal of Organic Evolution, 2018, 72, 2749-2757.	2.3	28
18	Host-switching by a vertically transmitted rhabdovirus in <i>Drosophila</i> . Biology Letters, 2011, 7, 747-750.	2.3	26

#	Article	IF	Citations
19	An emerging viral pathogen truncates population age structure in a European amphibian and may reduce population viability. PeerJ, 2018, 6, e5949.	2.0	25
20	Host–parasite coevolution: genetic variation in a virus population and the interaction with a host gene. Journal of Evolutionary Biology, 2010, 23, 1447-1455.	1.7	24
21	A core linkage map of the bumblebee <i>Bombus terrestris</i> . Genome, 2006, 49, 1215-1226.	2.0	23
22	Trypanosomatids are common and diverse parasites of <i>Drosophila </i> . Parasitology, 2011, 138, 858-865.	1.5	22
23	Disease association mapping in <i>Drosophila</i> can be replicated in the wild. Biology Letters, 2010, 6, 666-668.	2.3	20
24	Industrial bees: The impact of apicultural intensification on local disease prevalence. Journal of Applied Ecology, 2019, 56, 2195-2205.	4.0	20
25	Contrasting impacts of a novel specialist vector on multihost viral pathogen epidemiology in wild and managed bees. Molecular Ecology, 2020, 29, 380-393.	3.9	20
26	Flies on the move: an inherited virus mirrors <i>Drosophila melanogaster</i> 's elusive ecology and demography. Molecular Ecology, 2014, 23, 2093-2104.	3.9	19
27	OneHealth implications of infectious diseases of wild and managed bees. Journal of Invertebrate Pathology, 2021, 186, 107506.	3.2	18
28	Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virology Journal, 2022, 19, 12.	3.4	17
29	Plasmodium Infections in Natural Populations of Anolis sagrei Reflect Tolerance Rather Than Susceptibility. Integrative and Comparative Biology, 2017, 57, 352-361.	2.0	14
30	Prevalence and population genetics of the emerging honey bee pathogen DWV in Chinese apiculture. Scientific Reports, 2019, 9, 12042.	3.3	14
31	Host density drives viral, but not trypanosome, transmission in a key pollinator. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20191969.	2.6	14
32	Differentiation between populations of a termite in eastern Africa: implications for biogeography. Journal of Biogeography, 2006, 33, 1993-2000.	3.0	13
33	Longâ€term effects of antibiotic treatments on honeybee colony fitness: A modelling approach. Journal of Applied Ecology, 2021, 58, 70-79.	4.0	13
34	Assessment of the response of pollinator abundance to environmental pressures using structured expert elicitation. Journal of Apicultural Research, 2018, 57, 593-604.	1.5	11
35	Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community. Frontiers in Microbiology, 2021, 12, 650747.	3 . 5	10
36	Persistent effects of management history on honeybee colony virus abundances. Journal of Invertebrate Pathology, 2021, 179, 107520.	3.2	9

#	Article	IF	CITATIONS
37	Complex relationship between amino acids, fitness and food intake in Bombus terrestris. Amino Acids, 2021, 53, 1545-1558.	2.7	8
38	Construction and characterization of a BAC-library for a key pollinator, the bumblebee Bombus terrestris L Insectes Sociaux, 2009, 56, 44-48.	1.2	7
39	Dose-dependent effects of antibiotic intake on Bombus Terrestris (Linnaeus, 1758) dietary intake, survival and parasite infection prevalence. Journal of Invertebrate Pathology, 2021, 182, 107580.	3.2	7
40	Viral adaptations to vectorâ€borne transmission can result in complex host–vector–pathogen interactions. Journal of Animal Ecology, 2021, 90, 2230-2233.	2.8	3
41	Bumblebee., 2008,, 17-25.		1