Alex Tonks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5302469/publications.pdf Version: 2024-02-01

ALEY TONKS

#	Article	IF	CITATIONS
1	Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 2003, 21, 242-247.	3.2	357
2	Do reactive oxygen species play a role in myeloid leukemias?. Blood, 2011, 117, 5816-5826.	1.4	201
3	STIMULATION OF TNF-α RELEASE IN MONOCYTES BY HONEY. Cytokine, 2001, 14, 240-242.	3.2	200
4	Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood, 2013, 122, 3322-3330.	1.4	182
5	CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia, 2007, 21, 566-568.	7.2	168
6	A 5.8-kDa component of manuka honey stimulates immune cells via TLR4. Journal of Leukocyte Biology, 2007, 82, 1147-1155.	3.3	157
7	CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia, 2011, 25, 792-799.	7.2	138
8	Ras-induced reactive oxygen species promote growth factor–independent proliferation in human CD34+ hematopoietic progenitor cells. Blood, 2010, 115, 1238-1246.	1.4	109
9	Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia, 2007, 21, 2495-2505.	7.2	78
10	Reactive Oxygen Species Drive Proliferation in Acute Myeloid Leukemia via the Glycolytic Regulator PFKFB3. Cancer Research, 2020, 80, 937-949.	0.9	59
11	Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Stem Cell Reports, 2019, 13, 291-306.	4.8	56
12	Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells. Leukemia, 2012, 26, 2146-2148.	7.2	54
13	The AML1-ETO fusion gene promotes extensive self-renewal of human primary erythroid cells. Blood, 2003, 101, 624-632.	1.4	51
14	Expression of CD200 on AML blasts directly suppresses memory T-cell function. Leukemia, 2012, 26, 2148-2151.	7.2	49
15	The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts. Haematologica, 2014, 99, 858-864.	3.5	48
16	Factors Affecting the Nuclear Localization of β atenin in Normal and Malignant Tissue. Journal of Cellular Biochemistry, 2014, 115, 1351-1361.	2.6	47
17	Î ³ -Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of Î ² -catenin. Leukemia, 2013, 27, 336-343.	7.2	46
18	Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia, 2004, 18, 1238-1245.	7.2	40

ALEX TONKS

#	Article	IF	CITATIONS
19	The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse. Leukemia, 2015, 29, 1952-1954.	7.2	39
20	Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia, 2020, 34, 427-440.	7.2	39
21	Dipalmitoylphosphatidylcholine modulates inflammatory functions of monocytic cells independently of mitogen activated protein kinases. Clinical and Experimental Immunology, 2001, 124, 86-94.	2.6	35
22	OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene, 2010, 29, 2005-2012.	5.9	33
23	LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica, 2019, 104, 1365-1377.	3.5	32
24	Surfactant phospholipid DPPC downregulates monocyte respiratory burst via modulation of PKC. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L1070-L1080.	2.9	27
25	Reactive Oxygen Species Rewires Metabolic Activity in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 632623.	2.8	22
26	Optimized Retroviral Transduction Protocol Which Preserves the Primitive Subpopulation of Human Hematopoietic Cells. Biotechnology Progress, 2008, 21, 953-958.	2.6	17
27	TET-2 up-regulation is associated with the anti-inflammatory action of Vicenin-2. Cytokine, 2018, 108, 37-42.	3.2	16
28	Use of an anti D200â€blocking antibody improves immune responses to AML <i>in vitro</i> and <i>in vivo</i> . British Journal of Haematology, 2021, 193, 155-159.	2.5	15
29	Regulation of platelet-activating factor synthesis in human monocytes by dipalmitoyl phosphatidylcholine. Journal of Leukocyte Biology, 2003, 74, 95-101.	3.3	14
30	DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB. Biochemical and Biophysical Research Communications, 2008, 370, 174-178.	2.1	13
31	Gata2 haploinsufficiency promotes proliferation and functional decline of hematopoietic stem cells with myeloid bias during aging. Blood Advances, 2021, 5, 4285-4290.	5.2	11
32	PROSTAGLANDIN E2AND TUMOUR NECROSIS FACTOR-Î \pm RELEASE BY MONOCYTES ARE MODULATED BY PHOSPHOLIPIDS. Cytokine, 2000, 12, 1717-1719.	3.2	10
33	Increased expression of RUNX3 inhibits normal human myeloid development. Leukemia, 2022, 36, 1769-1780.	7.2	9
34	The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants, 2022, 11, 683.	5.1	7
35	Protein Kinase C Epsilon Overexpression Is Associated With Poor Patient Outcomes in AML and Promotes Daunorubicin Resistance Through p-Glycoprotein-Mediated Drug Efflux. Frontiers in Oncology, 0, 12, .	2.8	7
36	FUS expression alters the differentiation response to all-trans retinoic acid in NB4 and NB4R2 cells. British Journal of Haematology, 2007, 139, 94-97.	2.5	5

Alex Tonks

#	Article	IF	CITATIONS
37	RUNX1–ETO deregulates the proliferation and growth factor responsiveness of human hematopoietic progenitor cells downstream of the myeloid transcription factor, MYCT1. Leukemia, 2012, 26, 177-179.	7.2	5
38	RUNX3 overexpression inhibits normal human erythroid development. Scientific Reports, 2022, 12, 1243.	3.3	4
39	Crosstalk between β-catenin and WT1 signaling activity in acute myeloid leukemia. Haematologica, 2023, 108, 283-289.	3.5	4
40	Phospholipid modulation of monocyte oxidative activity measured by luminol-enhanced chemiluminescence. Lipids, 1999, 34, S147-S147.	1.7	2
41	The sensitivity of human cells expressing RUNX1-RUNX1T1 to chemotherapeutic agents. Leukemia, 2006, 20, 1883-1885.	7.2	2
42	Over-Expression of CD200 In Acute Myeloid Leukemia Mediates the Expansion of Regulatory T-Lymphocytes and Directly Inhibits Natural Killer Cell Tumor Immunity. Blood, 2010, 116, 491-491.	1.4	2
43	CD200 and PD1-L1 in AML Are Associated with Expanded PD-1+ Late Differentiated CD8+ T Cells and a Decreased CD4:CD8 Ratio: a New Link Between Distinct Immunosuppressive Pathways. Blood, 2014, 124, 992-992.	1.4	2
44	Identification of the Wnt Signalling Protein, TCF7L2 As a Significantly Overexpressed Transcription Factor in AML. Blood, 2012, 120, 1281-1281.	1.4	2
45	Î ³ -Catenin is expressed throughout normal human hematopoietic development and is required for normal PU.1-dependent monocyte differentiation. Leukemia, 2013, 27, 2096-2100.	7.2	1
46	Make Your Cake and Eat It: Refueling of Immune Fitness in AML Post Allo-HCT Using Baking Soda. Immunometabolism, 2021, 3, e210005.	1.6	1
47	Hole PS, Darley RL, Tonks A. Do reactive oxygen species play a role in myeloid leukemias? Blood. 2011;117(22):5816-5826 Blood, 2014, 123, 798-798.	1.4	0
48	Cord Blood-Derived Quiescent CD34 ⁺ Cells Are More Transcriptionally Matched to AML Blasts Than Cytokine-Induced Normal Human Hematopoietic CD34 ⁺ Cells. Gene Expression, 2015, 16, 169-175.	1.2	0
49	Reactive Oxygen Species and Metabolic Re-Wiring in Acute Leukemias. , 0, , .		0
50	Reactive oxygen species in leukemias: maintaining cancer cell proliferation via redox signaling and changing metabolic homeostasis. Oncotarget, 2021, 12, 952-954.	1.8	0
51	Ras Promotes Production of Reactive Oxygen Species in Normal Human CD34+ Cells: Role in Promoting Cell Survival and Protein Phosphorylation. Blood, 2008, 112, 3797-3797.	1.4	0
52	PDK1 Overexpression In Acute Myeloid Leukemia; Clinical Significance and Potential as a Therapeutic Target. Blood, 2010, 116, 2162-2162.	1.4	0
53	Large-Scale Integration of Gene Profiling Identifies TCF7L2/TCF4 as the Most Frequently Dysregulated Wnt Signaling Component In AML. Blood, 2010, 116, 2480-2480.	1.4	0
54	Integrated Nuclear Proteomics and Transcriptomics Identifies New High Frequency Dysregulated Transcription Factors in AML. Blood, 2014, 124, 3554-3554.	1.4	0

Alex Tonks

#	Article	IF	CITATIONS
55	Analysis of ROS-Responsive Genes in Mutant RAS Expressing Hematopoietic Progenitors Identifies the Glycolytic Pathway As a Major Target Promoting Both Proliferation and Survival. Blood, 2014, 124, 2210-2210.	1.4	0
56	Intracellular Thiol Oxidation Is Linked with Loss of ΔÏ^m and Disease Progression in Acute Promyelocytic Leukaemia. Blood, 2018, 132, 2751-2751.	1.4	0
57	Overexpression or Deficiency of RUNX3 Results in Defective Normal Human Hematopoietic Development Similar to RUNX1-ETO Expression in AML. Blood, 2019, 134, 2527-2527.	1.4	0
58	PKC-Epsilon Overexpression Is Associated with Poor Outcomes in AML and Promotes Chemoresistance and Hematopoietic Stem Cell Quiescence. Blood, 2019, 134, 2704-2704.	1.4	0