Wanderley D Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301933/publications.pdf

Version: 2024-02-01

58 papers

2,258 citations

279798 23 h-index 233421 45 g-index

60 all docs 60 docs citations

60 times ranked

3002 citing authors

#	Article	IF	CITATIONS
1	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	4.6	8
2	<i>p</i> -Methoxycinnamic acid disturbs cellular respiration and increases the lignification of <i>Euphorbia heterophylla</i> roots. Plant Biosystems, 2023, 157, 12-23.	1.6	2
3	Sustainable production of succinic acid and 3-hydroxypropionic acid from renewable feedstocks., 2022,, 367-386.		1
4	Climate change affects cellâ€wall structure and hydrolytic performance of a perennial grass as an energy crop. Biofuels, Bioproducts and Biorefining, 2022, 16, 471-487.	3.7	3
5	Biochemical composition of the pericarp cell wall of popcorn inbred lines with different popping expansion. Current Research in Food Science, 2022, 5, 102-106.	5.8	6
6	Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178, 12-19.	5.8	2
7	Efeitos da giberelina sobre o número de flores e frutos na cultura do morango em sistema semi-hidropônico / Effects of gibberellin on flower and fruit number in strawberry crop under semi-hydroponic system. Brazilian Journal of Development, 2022, 8, 31133-31141.	0.1	O
8	Design of experiments driven optimization of alkaline pretreatment and saccharification for sugarcane bagasse. Bioresource Technology, 2021, 321, 124499.	9.6	16
9	Suppression of a BAHD acyltransferase decreases <i>p</i> â€coumaroyl on arabinoxylan and improves biomass digestibility in the model grass <i>Setaria viridis</i> . Plant Journal, 2021, 105, 136-150.	5.7	27
10	Inhibition of Maize Caffeate 3-O-Methyltransferase by Nitecapone as a Possible Approach to Reduce Lignocellulosic Biomass Recalcitrance. Plant Molecular Biology Reporter, 2021, 39, 179-191.	1.8	5
11	Titanium Dioxide Nanoparticles Induce Root Growth Inhibition in Soybean Due to Physical Damages. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	14
12	Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth. Plant Physiology and Biochemistry, 2021, 159, 335-346.	5.8	14
13	The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology, 2021, 455, 152766.	4.2	5
14	Cadmium uncouples mitochondrial oxidative phosphorylation and induces oxidative cellular stress in soybean roots. Environmental Science and Pollution Research, 2021, 28, 67711-67723.	5.3	8
15	The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102446.	2.6	1
16	Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renewable Energy, 2020, 147, 2206-2217.	8.9	38
17	Inhibition of Zea mays coniferyl aldehyde dehydrogenase by daidzin: A potential approach for the investigation of lignocellulose recalcitrance. Process Biochemistry, 2020, 90, 131-138.	3.7	30
18	Feruloyl esterase activity and its role in regulating the feruloylation of maize cell walls. Plant Physiology and Biochemistry, 2020, 156, 49-54.	5.8	6

#	Article	IF	CITATIONS
19	Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an in silico and in vitro approach. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 484-493.	1.7	4
20	Entacapone improves saccharification without affecting lignin and maize growth: An in silico, in vitro, and in vivo approach. Plant Physiology and Biochemistry, 2020, 151, 421-428.	5.8	5
21	Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 2020, 19, 865-906.	6.5	182
22	Modulation of cellulase activity by lignin-related compounds. Bioresource Technology Reports, 2020, 10, 100390.	2.7	11
23	The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: A balance of the useful and harmful effects of this photosensitizer. Free Radical Biology and Medicine, 2020, 153, 34-53.	2.9	25
24	L-DOPA and Dopamine in Plant Metabolism. Signaling and Communication in Plants, 2020, , 141-167.	0.7	7
25	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	5.7	79
26	Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Industrial Crops and Products, 2019, 140, 111657.	5.2	47
27	Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. Plant Physiology and Biochemistry, 2019, 142, 275-282.	5.8	16
28	The entropic and symbolic components of information. BioSystems, 2019, 182, 17-20.	2.0	4
29	Designing xylan for improved sustainable biofuel production. Plant Biotechnology Journal, 2019, 17, 2225-2227.	8.3	15
30	Calophyllum brasiliense Cambess: An alternative and promising source of shikimic acid. Sustainable Chemistry and Pharmacy, 2019, 14, 100188.	3.3	2
31	Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology, 2019, 278, 408-423.	9.6	90
32	Suppression of a single <scp>BAHD</scp> gene in <i>Setaria viridis</i> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 2018, 218, 81-93.	7.3	91
33	Comparative effects of L-DOPA and velvet bean seed extract on soybean lignification. Plant Signaling and Behavior, 2018, 13, e1451705.	2.4	5
34	Carrying pieces of information in organocatalytic bytes: Semiopoiesisâ€"A new theory of life and its origins. BioSystems, 2018, 164, 167-176.	2.0	5
35	Trans-aconitic acid inhibits the growth and photosynthesis of Glycine max. Plant Physiology and Biochemistry, 2018, 132, 490-496.	5.8	11
36	Increased Gibberellins and Light Levels Promotes Cell Wall Thickness and Enhance Lignin Deposition in Xylem Fibers. Frontiers in Plant Science, 2018, 9, 1391.	3.6	59

#	Article	IF	Citations
37	Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles. Chemosphere, 2018, 211, 226-234.	8.2	8
38	Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering, 2018, 5, 63-77.	1.1	56
39	Assessment of ultrasound-assisted extraction of crambe seed oil for biodiesel synthesis by in situ interesterification. Renewable Energy, 2017, 111, 659-665.	8.9	46
40	Phenolic Compounds in Plants: Implications for Bioenergy. , 2017, , 39-52.		2
41	Enzymatic interesterification of crambe oil assisted by ultrasound. Industrial Crops and Products, 2017, 97, 218-223.	5 . 2	31
42	Ten Simple Rules for Developing a Successful Research Proposal in Brazil. PLoS Computational Biology, 2017, 13, e1005289.	3.2	3
43	Acyl-homoserine Lactone from <i>Saccharum × officinarum</i> with Stereochemistry-Dependent Growth Regulatory Activity. Journal of Natural Products, 2016, 79, 1316-1321.	3.0	5
44	Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS Bioengineering, 2016, 4, 1-11.	1.1	9
45	Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 2015, 13, 1224-1232.	8.3	210
46	The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE, 2014, 9, e110000.	2.5	205
47	The role of L-DOPA in plants. Plant Signaling and Behavior, 2014, 9, e28275.	2.4	115
48	The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signaling and Behavior, 2014, 9, e977704.	2.4	31
49	Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 395-411.	1.2	139
50	Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth. PLoS ONE, 2013, 8, e80542.	2.5	41
51	Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS ONE, 2013, 8, e69105.	2.5	98
52	Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability. Cellulose, 2012, 19, 1507-1515.	4.9	24
53	Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). Journal of Plant Physiology, 2011, 168, 1627-1633.	3.5	98
54	The Biotechnology Roadmap for Sugarcane Improvement. Tropical Plant Biology, 2010, 3, 75-87.	1.9	62

#	Article	IF	CITATIONS
55	Soybean (Glycine max) Root Lignification Induced by Ferulic Acid. The Possible Mode of Action. Journal of Chemical Ecology, 2008, 34, 1230-1241.	1.8	102
56	High performance liquid chromatography method forÂtheÂdetermination ofÂcinnamyl alcohol dehydrogenase activity inÂsoybean roots. Plant Physiology and Biochemistry, 2006, 44, 511-515.	5.8	26
57	Lignification and Related Enzymes in Glycine max Root Growth-Inhibition by Ferulic Acid. Journal of Chemical Ecology, 2004, 30, 1203-1212.	1.8	96
58	Treating maize plants with benzohydrazide increases saccharification of lignocellulose: A non-transgenic approach to improve cellulosic ethanol production. Biomass Conversion and Biorefinery, $0, 1$.	4.6	O