
Natalia V Alenina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats. Neurochemistry International, 2022, 152, 105223.	3.8	8
2	Carbon-mixed dental cement for fixing fiber optic ferrules prevents visually triggered locomotive enhancement in mice upon optogenetic stimulation. Heliyon, 2022, 8, e08692.	3.2	2
3	Myogenic Vasoconstriction Requires Canonical G _{q/11} Signaling of the Angiotensin II Type 1 Receptor. Journal of the American Heart Association, 2022, 11, e022070.	3.7	12
4	Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells, 2022, 11, 874.	4.1	4
5	Peripheral Serotonin Deficiency Affects Anxiety-like Behavior and the Molecular Response to an Acute Challenge in Rats. International Journal of Molecular Sciences, 2022, 23, 4941.	4.1	6
6	Intrauterine Exposure to Diabetic Milieu Does Not Induce Diabetes and Obesity in Male Adulthood in a Novel Rat Model. Hypertension, 2021, 77, 202-215.	2.7	4
7	Genetic Deletion of Trace-Amine Associated Receptor 9 (TAAR9) in Rats Leads to Decreased Blood Cholesterol Levels. International Journal of Molecular Sciences, 2021, 22, 2942.	4.1	7
8	Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival. Scientific Reports, 2021, 11, 6004.	3.3	6
9	Phenylalanine hydroxylase contributes to serotonin synthesis in mice. FASEB Journal, 2021, 35, e21648.	0.5	11
10	Diabetic pregnancy as a novel risk factor for cardiac dysfunction in the offspring—the heart as a target for fetal programming in rats. Diabetologia, 2021, 64, 2829-2842.	6.3	6
11	Alamandine but not angiotensin-(1–7) produces cardiovascular effects at the rostral insular cortex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R513-R521.	1.8	11
12	Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clinical Science, 2021, 135, 2197-2216.	4.3	4
13	Alterations in BDNF Protein Concentrations in the Hippocampus do not Explain the Pro-Neurogenic Effect of Citalopram on Adult Neurogenesis. Pharmacopsychiatry, 2021, 54, 101-105.	3.3	2
14	Enduring Effects of Conditional Brain Serotonin Knockdown, Followed by Recovery, on Adult Rat Neurogenesis and Behavior. Cells, 2021, 10, 3240.	4.1	2
15	In Vivo Renin Activity Imaging in the Kidney of Progeroid Ercc1 Mutant Mice. International Journal of Molecular Sciences, 2021, 22, 12433.	4.1	2
16	Angiotensin-(1-7) induces beige fat thermogenesis through the Mas receptor. Metabolism: Clinical and Experimental, 2020, 103, 154048.	3.4	19
17	CYP17A1 deficient XY mice display susceptibility to atherosclerosis, altered lipidomic profile and atypical sex development. Scientific Reports, 2020, 10, 8792.	3.3	19
18	The Absence of Serotonin in the Brain Alters Acute Stress Responsiveness by Interfering With the Genomic Function of the Glucocorticoid Receptors. Frontiers in Cellular Neuroscience, 2020, 14, 128.	3.7	7

#	Article	IF	CITATIONS
19	Angiotensin-(1–7) Receptor Mas Deficiency Does Not Exacerbate Cardiac Atrophy Following High-Level Spinal Cord Injury in Mice. Frontiers in Physiology, 2020, 11, 203.	2.8	1
20	The serotonin-free brain: behavioral consequences of Tph2 deficiency in animal models. Handbook of Behavioral Neuroscience, 2020, 31, 601-607.	0.7	6
21	3-Amino-1,2,4-Triazole Induces Quick and Strong Fat Loss in Mice with High Fat-Induced Metabolic Syndrome. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	4
22	ACE2, a multifunctional protein – from cardiovascular regulation to COVID-19. Clinical Science, 2020, 134, 3229-3232.	4.3	7
23	Priming of LTP in amygdala and hippocampus by prior paired pulse facilitation paradigm in mice lacking brain serotonin. Hippocampus, 2019, 29, 610-618.	1.9	7
24	Nephropathy in Hypertensive Animals Is Linked to M2 Macrophages and Increased Expression of the YM1/Chi3l3 Protein. Mediators of Inflammation, 2019, 2019, 1-14.	3.0	5
25	Targeted genomic integration of EGFP under tubulin beta 3 class III promoter and mEos2 under tryptophan hydroxylase 2 promoter does not produce sufficient levels of reporter gene expression. Journal of Cellular Biochemistry, 2019, 120, 17208-17218.	2.6	4
26	Lack of Brain Serotonin Affects Feeding and Differentiation of Newborn Cells in the Adult Hypothalamus. Frontiers in Cell and Developmental Biology, 2019, 7, 65.	3.7	13
27	The antiobese effect of AT1 receptor blockade is augmented in mice lacking Mas. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 865-877.	3.0	5
28	Targeted Manipulation of Brain Serotonin: RNAi-Mediated Knockdown of Tryptophan Hydroxylase 2 in Rats. ACS Chemical Neuroscience, 2019, 10, 3207-3217.	3.5	9
29	ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochemical Research, 2019, 44, 1323-1329.	3.3	112
30	Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H123-H133.	3.2	35
31	Life Without Brain Serotonin. , 2019, , 405-420.		Ο
32	Genetic Models. , 2019, , 35-51.		0
33	Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response. Cellular and Molecular Life Sciences, 2018, 75, 3625-3634.	5.4	53
34	Diabetes Mellitus in Pregnancy Leads to Growth Restriction and Epigenetic Modification of the <i>Srebf2</i> Gene in Rat Fetuses. Hypertension, 2018, 71, 911-920.	2.7	30
35	Mast Cells and Serotonin Synthesis Modulate Chagas Disease in the Colon: Clinical and Experimental Evidence. Digestive Diseases and Sciences, 2018, 63, 1473-1484.	2.3	10
36	TPH2 Deficiency Influences Neuroplastic Mechanisms and Alters the Response to an Acute Stress in a Sex Specific Manner. Frontiers in Molecular Neuroscience, 2018, 11, 389.	2.9	21

#	Article	IF	CITATIONS
37	The Meaning of Mas. Hypertension, 2018, 72, 1072-1075.	2.7	46
38	Chronic Overexpression of Bradykinin in Kidney Causes Polyuria and Cardiac Hypertrophy. Frontiers in Medicine, 2018, 5, 338.	2.6	3
39	Transfer of Synthetic Human Chromosome into Human Induced Pluripotent Stem Cells for Biomedical Applications. Cells, 2018, 7, 261.	4.1	17
40	The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiological Reviews, 2018, 98, 505-553.	28.8	756
41	Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study. Frontiers in Physiology, 2018, 9, 1930.	2.8	6
42	Evaluation of Endothelial Dysfunction In Vivo. Methods in Molecular Biology, 2017, 1527, 355-367.	0.9	4
43	Glucagon-producing cells are increased in Mas-deficient mice. Endocrine Connections, 2017, 6, 27-32.	1.9	6
44	Comeback of the Rat in Biomedical Research. ACS Chemical Neuroscience, 2017, 8, 900-903.	3.5	90
45	Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS. Hypertension, 2017, 69, 1128-1135.	2.7	87
46	Serotonin regulates prostate growth through androgen receptor modulation. Scientific Reports, 2017, 7, 15428.	3.3	21
47	The TetO rat as a new translational model for type 2 diabetic retinopathy by inducible insulin receptor knockdown. Diabetologia, 2017, 60, 202-211.	6.3	10
48	CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	13
49	Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress. PLoS ONE, 2016, 11, e0150255.	2.5	52
50	Effects of ACE2 deficiency on physical performance and physiological adaptations of cardiac and skeletal muscle to exercise. Hypertension Research, 2016, 39, 506-512.	2.7	45
51	Increased adult neurogenesis in mice with a permanent overexpression of the postsynaptic 5-HT 1A receptor. Neuroscience Letters, 2016, 633, 246-251.	2.1	9
52	Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin. European Archives of Psychiatry and Clinical Neuroscience, 2016, 266, 281-284.	3.2	28
53	Reduced isolation-induced pup ultrasonic communication in mouse pups lacking brain serotonin. Molecular Autism, 2015, 6, 13.	4.9	54
54	Stable maintenance of <i>de novo</i> assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice. Cell Cycle, 2015, 14, 1268-1273.	2.6	22

#	Article	IF	CITATIONS
55	Multiple non-coding exons and alternative splicing in the mouse Mas protooncogene. Gene, 2015, 568, 155-164.	2.2	1
56	Beyond Gene Inactivation: Evolution of Tools for Analysis of Serotonergic Circuitry. ACS Chemical Neuroscience, 2015, 6, 1116-1129.	3.5	14
57	Angiotensin-(1-7) and Mas. , 2015, , 155-159.		3
58	Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice. Immunobiology, 2015, 220, 1311-1321.	1.9	17
59	The role of serotonin in adult hippocampal neurogenesis. Behavioural Brain Research, 2015, 277, 49-57.	2.2	144
60	Life without brain serotonin: Reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behavioural Brain Research, 2015, 277, 78-88.	2.2	104
61	Abstract P110: Mrgd Expression in Cardiovascular Related Areas. Hypertension, 2015, 66, .	2.7	3
62	Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nature Medicine, 2014, 20, 1229-1230.	30.7	26
63	Receptor Mas Protects Mice Against Hypothermia and Mortality Induced By Endotoxemia. Shock, 2014, 41, 331-336.	2.1	31
64	Oral administration of angiotensin-(1–7) ameliorates type 2 diabetes in rats. Journal of Molecular Medicine, 2014, 92, 255-265.	3.9	74
65	Angiotensin 1–7 Reduces Mortality and Rupture of Intracranial Aneurysms in Mice. Hypertension, 2014, 64, 362-368.	2.7	38
66	Mas and Its Related G Protein–Coupled Receptors, Mrgprs. Pharmacological Reviews, 2014, 66, 1080-1105.	16.0	147
67	Stretch–Activation of Angiotensin II Type 1 _a Receptors Contributes to the Myogenic Response of Mouse Mesenteric and Renal Arteries. Circulation Research, 2014, 115, 263-272.	4.5	108
68	Adaptive changes in serotonin metabolism preserve normal behavior in mice with reduced TPH2 activity. Neuropharmacology, 2014, 85, 73-80.	4.1	35
69	Characterization of a novel transgenic rat model for imaging brain vascular dynamics in vivo using confocal endomicroscopy (686.27). FASEB Journal, 2014, 28, 686.27.	0.5	0
70	Functional Cross-Talk Between Aldosterone and Angiotensin-(1-7) in Ventricular Myocytes. Hypertension, 2013, 61, 425-430.	2.7	30
71	Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behavioural Brain Research, 2013, 257, 25-30.	2.2	48
72	Postnatal Growth Defects in Mice with Constitutive Depletion of Central Serotonin. ACS Chemical Neuroscience, 2013, 4, 171-181.	3.5	71

#	Article	IF	CITATIONS
73	Serotonin Is Required for Exercise-Induced Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2013, 33, 8270-8275.	3.6	185
74	Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1323-R1330.	1.8	28
75	Discovery and Characterization of Alamandine. Circulation Research, 2013, 112, 1104-1111.	4.5	323
76	Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiology of Learning and Memory, 2012, 97, 113-123.	1.9	74
77	Exercise induces renin–angiotensin system unbalance and high collagen expression in the heart of Mas-deficient mice. Peptides, 2012, 38, 54-61.	2.4	32
78	Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. Regulatory Peptides, 2012, 175, 30-42.	1.9	38
79	ACE2–angiotensin-(1–7)–Mas axis and oxidative stress in cardiovascular disease. Hypertension Research, 2011, 34, 154-160.	2.7	141
80	Forced Expression of LIM Homeodomain Transcription Factor 1b Enhances Differentiation of Mouse Embryonic Stem Cells into Serotonergic Neurons. Stem Cells and Development, 2011, 20, 301-311.	2.1	17
81	Mas receptors in modulating relaxation induced by perivascular adipose tissue. Life Sciences, 2011, 89, 467-472.	4.3	37
82	Derivation, Characterization, and Stable Transfection of Induced Pluripotent Stem Cells from Fischer344 Rats. PLoS ONE, 2011, 6, e27345.	2.5	26
83	An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect. Clinics, 2011, 66, 837-841.	1.5	89
84	Improved Lipid and Glucose Metabolism in Transgenic Rats With Increased Circulating Angiotensin-(1-7). Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 953-961.	2.4	143
85	Knockout of Angiotensin 1–7 Receptor Mas Worsens the Course of Two-Kidney, One-Clip Goldblatt Hypertension: Roles of Nitric Oxide Deficiency and Enhanced Vascular Responsiveness to Angiotensin II. Kidney and Blood Pressure Research, 2010, 33, 476-488.	2.0	35
86	Tryptophan Hydroxylase as Novel Target for the Treatment of Depressive Disorders. Pharmacology, 2010, 85, 95-109.	2.2	68
87	Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides, 2010, 31, 1934-1939.	2.4	31
88	Inducible Transgenic Rat Model for Diabetes Mellitus Based on shRNA-Mediated Gene Knockdown. PLoS ONE, 2009, 4, e5124.	2.5	37
89	Growth retardation and altered autonomic control in mice lacking brain serotonin. Proceedings of the United States of America, 2009, 106, 10332-10337.	7.1	305
90	The role of angiotensinâ€(1–7) receptor Mas in spermatogenesis in mice and rats. Journal of Anatomy, 2009, 214, 736-743.	1.5	50

#	ARTICLE	IF	CITATIONS
91	Genetic deletion of the angiotensin-(1–7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney International, 2009, 75, 1184-1193.	5.2	125
92	Genetically altered animal models for Mas and angiotensinâ€(1–7). Experimental Physiology, 2008, 93, 528-537.	2.0	119
93	Ablation of angiotensin (1-7) receptor Mas in C57Bl/6 mice causes endothelial dysfunction. Journal of the American Society of Hypertension, 2008, 2, 418-424.	2.3	63
94	<i>Mas</i> Deficiency in FVB/N Mice Produces Marked Changes in Lipid and Glycemic Metabolism. Diabetes, 2008, 57, 340-347.	0.6	219
95	Endothelial Dysfunction and Elevated Blood Pressure in <i>Mas</i> Gene-Deleted Mice. Hypertension, 2008, 51, 574-580.	2.7	178
96	Molecular Mechanisms Involved in the Angiotensin-(1-7)/Mas Signaling Pathway in Cardiomyocytes. Hypertension, 2008, 52, 542-548.	2.7	147
97	Evidence that the vasodilator angiotensin-(1–7)-Mas axis plays an important role in erectile function. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2588-H2596.	3.2	53
98	Alterations in gene expression in the testis of angiotensin-(1–7)-receptor Mas-deficient mice. Regulatory Peptides, 2007, 138, 51-55.	1.9	31
99	Effects of genetic deletion of angiotensin- $(1\hat{a}\in$ 7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sciences, 2006, 80, 264-268.	4.3	48
100	Impairment of In Vitro and In Vivo Heart Function in Angiotensin-(1-7) Receptor Mas Knockout Mice. Hypertension, 2006, 47, 996-1002.	2.7	211
101	Evidence for a Functional Interaction of the Angiotensin-(1–7) Receptor Mas With AT 1 and AT 2 Receptors in the Mouse Heart. Hypertension, 2005, 46, 937-942.	2.7	158
102	Nonpeptide AVE 0991 Is an Angiotensin-(1–7) Receptor Mas Agonist in the Mouse Kidney. Hypertension, 2004, 44, 490-496.	2.7	155
103	Cell Type-specific Expression of the Mas Proto-oncogene in Testis. Journal of Histochemistry and Cytochemistry, 2002, 50, 691-695.	2.5	37