Guiqiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Light Absorption and Spectral Manipulation via an Electro-Optical Nano-Cavity. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	1
2	Kerr nonlinear medium assisted double-face absorbers for differential manipulation via an all-optical operation. Optics Express, 2022, 30, 26597.	3.4	2
3	Silicon Antennas Metasurface Based Light Absorber With Quantitatively Adjustable Operating Frequency and Intensity. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	2.9	7
4	Refractory materials and plasmonics based perfect absorbers. Nanotechnology, 2021, 32, 132002.	2.6	16
5	Recent progresses on metamaterials for optical absorption and sensing: a review. Journal Physics D: Applied Physics, 2021, 54, 113002.	2.8	58
6	Nano-slit assisted high-Q photonic resonant perfect absorbers. Optics Express, 2021, 29, 5270.	3.4	7
7	Asymmetric plasmonic-semiconductor cavities for angle-adjusted dual-band differential absorption responses. Optics Communications, 2021, 485, 126722.	2.1	1
8	Solar energy full-spectrum perfect absorption and efficient photo-thermal generation*. Chinese Physics B, 2021, 30, 084206.	1.4	4
9	Ultra-narrowband resonant light absorber for high-performance thermal-optical modulators. Optics Express, 2021, 29, 31048.	3.4	9
10	Super-Absorbers by Randomly Distributed Titanium Spheres. IEEE Photonics Technology Letters, 2021, 33, 247-250.	2.5	4
11	DVD assisted titanium metasurface for solar energy perfect absorption and potential applications for local thermal antibacterial treatment. Journal Physics D: Applied Physics, 2021, 54, 115106.	2.8	2
12	Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors. Optics Express, 2021, 29, 70.	3.4	71
13	Ultra-sharp Plasmonic Super-cavity Resonance and Light Absorption. Plasmonics, 2020, 15, 11-19.	3.4	3
14	An ultra-broadband, polarization and angle-insensitive metamaterial light absorber. Journal Physics D: Applied Physics, 2020, 53, 095106.	2.8	23
15	Plasmonic sensors with an ultra-high figure of merit. Nanotechnology, 2020, 31, 115208.	2.6	30
16	Semiconductor-nanoantenna-assisted solar absorber for ultra-broadband light trapping. Nanoscale Research Letters, 2020, 15, 76.	5.7	15
17	High-performance plasmonic oblique sensors for the detection of ions. Nanotechnology, 2020, 31, 285501.	2.6	13
18	Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications. Journal of Materials Chemistry C, 2020, 8, 12768-12794.	5.5	40

Guiqiang Liu

#	Article	IF	CITATIONS
19	Large-scale reflective optical Janus color materials. Nanotechnology, 2020, 31, 225301.	2.6	6
20	Polarization and angle insensitive ultra-broadband mid-infrared perfect absorber. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126288.	2.1	25
21	Colloid templated semiconductor meta-surface for ultra-broadband solar energy absorber. Solar Energy, 2020, 198, 194-201.	6.1	31
22	High-Q plasmonic graphene absorbers for electrical switching and optical detection. Carbon, 2020, 166, 256-264.	10.3	35
23	Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology, 2020, 31, 465501.	2.6	37
24	Plasmonic wavy surface for ultrathin semiconductor black absorbers. Optics Express, 2020, 28, 27764.	3.4	16
25	Multi-resonant refractory prismoid for full-spectrum solar energy perfect absorbers. Optics Express, 2020, 28, 31763.	3.4	15
26	Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Optics Express, 2020, 28, 36476.	3.4	49
27	Ultra-high quality graphene perfect absorbers for high performance switching manipulation. Optics Express, 2020, 28, 37294.	3.4	18
28	Metal-free plasmonic refractory core-shell nanowires for tunable all-dielectric broadband perfect absorbers. Optics Express, 2020, 28, 37049.	3.4	4
29	High-quality Temperature Sensor Based on the Plasmonic Resonant Absorber. Plasmonics, 2019, 14, 279-283.	3.4	11
30	Tunable, large-scale and low-cost Si infrared absorbers. Journal Physics D: Applied Physics, 2019, 52, 465107.	2.8	1
31	Si nano-cavity enabled surface-enhanced Raman scattering signal amplification. Nanotechnology, 2019, 30, 465204.	2.6	9
32	Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics, 2019, 8, 1095-1107.	6.0	65
33	Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Optics Express, 2019, 27, 11809.	3.4	113
34	Silicon-based light absorbers with unique polarization-adjusting effects. Journal Physics D: Applied Physics, 2019, 52, 505109.	2.8	7
35	Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology, 2019, 30, 305203.	2.6	86
36	A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films. Nanoscale Research Letters, 2019, 14, 94.	5.7	21

GUIQIANG LIU

#	Article	IF	CITATIONS
37	Hybrid Metal-Semiconductor Meta-Surface Based Photo-Electronic Perfect Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-7.	2.9	25
38	Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Solar Energy Materials and Solar Cells, 2019, 190, 20-29.	6.2	128
39	Tunable dual-band plasmonic perfect absorber and its sensing applications. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2750.	2.1	19
40	Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates. Sensors and Actuators B: Chemical, 2018, 262, 845-851.	7.8	45
41	Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Solar Energy Materials and Solar Cells, 2018, 179, 346-352.	6.2	177
42	Rapid Preparation of Large-Area Densely Packed Plasmonic Hot-Spots for Reliable Sers Sensing. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 447-453.	0.6	0
43	Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers. Carbon, 2018, 140, 362-367.	10.3	84
44	Titanium resonators based ultra-broadband perfect light absorber. Optical Materials, 2018, 83, 118-123.	3.6	74
45	High-Quality Plasmon Sensing with Excellent Intensity Contrast by Dual Narrow-Band Light Perfect absorbers. Plasmonics, 2017, 12, 65-68.	3.4	9
46	Semiconductor meta-surface based perfect light absorber. Nanotechnology, 2017, 28, 165202.	2.6	26
47	Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces. Journal Physics D: Applied Physics, 2017, 50, 335106.	2.8	4
48	Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array. Nanotechnology, 2016, 27, 125202.	2.6	12
49	Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Optics Express, 2016, 24, 5020.	3.4	84
50	Common Metal-Dielectric-Metal Nanocavities for Multispectral Narrowband Light Absorption. Plasmonics, 2016, 11, 781-786.	3.4	3
51	Multi-Band High Refractive Index Susceptibility of Plasmonic Structures with Network-Type Metasurface. Plasmonics, 2016, 11, 677-682.	3.4	22
52	Improving Plasmon Sensing Performance by Exploiting the Spatially Confined Field. Plasmonics, 2016, 11, 29-36.	3.4	10
53	Polarization-Induced Tunability of Plasmonic Light Absorption in Arrays of Sub-Wavelength Elliptical Disks. Plasmonics, 2016, 11, 79-86.	3.4	1
54	Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. Journal of Materials Chemistry C, 2015, 3, 4222-4226.	5.5	80

GUIQIANG LIU

#	Article	IF	CITATIONS
55	Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology, 2015, 26, 235702.	2.6	39
56	Multispectral Sharp Plasmon Resonances for Polarization-Manipulated Subtractive Polychromatic Filtering and Sensing. Plasmonics, 2015, 10, 821-830.	3.4	9
57	Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation. ACS Applied Materials & Interfaces, 2015, 7, 4962-4968.	8.0	229
58	Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals. Sensors and Actuators B: Chemical, 2015, 215, 480-488.	7.8	63
59	Making a Conducting Metal with Optical Transparency via Coupled Plasmonic-Photonic Nanostructures. Plasmonics, 2015, 10, 1195-1200.	3.4	3
60	Effects of Compound Rectangular Subwavelength Hole Arrays on Enhancing Optical Transmission. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	20
61	Enabling access to the confined optical field to achieve high-quality plasmon sensing. IEEE Photonics Technology Letters, 2015, , 1-1.	2.5	9
62	Improved Multispectral Antireflection and Sensing of Plasmonic Slits by Silver Mirror. IEEE Photonics Technology Letters, 2014, 26, 2111-2114.	2.5	11
63	Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays. Optical Engineering, 2014, 53, 107108.	1.0	6
64	Robust Optical Transparency of a Continuous Metal Film Sandwiched by Plasmonic Crystals. IEEE Photonics Technology Letters, 2014, 26, 1738-1741.	2.5	3
65	Tunable Extraordinary Optical Transmission in a Metal Film Perforated with Two-Level Subwavelength Cylindrical Holes. Plasmonics, 2014, 9, 1149-1153.	3.4	16
66	Influence of Experimental Parameters on the Surface-Enhanced Raman Scattering via Gold Nanoparticle Arrays. , 2012, , .		0
67	A New Photonic Crystal Channel Drop Filter. , 2012, , .		1
68	Controlling Decoherence from Fluctuating Magnetic Field. International Journal of Theoretical Physics, 2010, 49, 18-24.	1.2	6
69	Overcoming Decoherent Effects from Squeezed Vacuum Reservoir. International Journal of Theoretical Physics, 2010, 49, 1936-1943.	1.2	2
70	Engineering a light-emitting planar defect within three-dimensional photonic crystals. Science and Technology of Advanced Materials, 2009, 10, 055001.	6.1	6
71	High-quality photonic crystal heterostructures fabricated by a modified self-assembly method. Applied Optics, 2009, 48, 2480.	2.1	15
72	Ultra-broadband solar light wave trapping by gradient cavity-thin-film metasurface. Journal Physics D: Applied Physics, 0, , .	2.8	7