Taijiao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301325/publications.pdf

Version: 2024-02-01

218677 98798 5,261 93 26 67 h-index citations g-index papers 99 99 99 10734 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host and Microbe, 2020, 27, 325-328.	11.0	1,860
2	The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 2020, 109, 102434.	6.5	704
3	A magnetic protein biocompass. Nature Materials, 2016, 15, 217-226.	27.5	250
4	From Mosquitos to Humans: Genetic Evolution of Zika Virus. Cell Host and Microbe, 2016, 19, 561-565.	11.0	199
5	Management and Treatment of COVID-19: The Chinese Experience. Canadian Journal of Cardiology, 2020, 36, 915-930.	1.7	147
6	Sequential Reassortments Underlie Diverse Influenza H7N9 Genotypes in China. Cell Host and Microbe, 2013, 14, 446-452.	11.0	141
7	Inference of immune cell composition on the expression profiles of mouse tissue. Scientific Reports, 2017, 7, 40508.	3. 3	132
8	Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nature Communications, 2012, 3, 709.	12.8	88
9	Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 176, 1-12.	7.5	77
10	Comparative Transcriptome Analysis Reveals the Intensive Early Stage Responses of Host Cells to SARS-CoV-2 Infection. Frontiers in Microbiology, 2020, 11, 593857.	3.5	62
11	Single-Cell Transcriptome Analysis of Uniparental Embryos Reveals Parent-of-Origin Effects on Human Preimplantation Development. Cell Stem Cell, 2019, 25, 697-712.e6.	11.1	61
12	One year of SARS-CoV-2 evolution. Cell Host and Microbe, 2021, 29, 503-507.	11.0	60
13	Clinical Pathway for Early Diagnosis of COVID-19: Updates from Experience to Evidence-Based Practice. Clinical Reviews in Allergy and Immunology, 2020, 59, 89-100.	6.5	59
14	Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infection, Genetics and Evolution, 2018, 61, 183-184.	2.3	55
15	A Fast and Refined Cancer Regions Segmentation Framework in Whole-slide Breast Pathological Images. Scientific Reports, 2019, 9, 882.	3.3	55
16	Intracellular CD24 disrupts the ARF–NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nature Communications, 2015, 6, 5909.	12.8	54
17	Improved side-chain modeling by coupling clash-detection guided iterative search with rotamer relaxation. Bioinformatics, 2011, 27, 785-790.	4.1	52
18	Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biology, 2021, 19, 5.	3.8	50

#	Article	IF	CITATIONS
19	Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus. Scientific Reports, 2015, 5, 14171.	3.3	47
20	Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution. Genome Research, 2008, 18, 178-187.	5.5	44
21	Origin of the Reflectin Gene and Hierarchical Assembly of Its Protein. Current Biology, 2017, 27, 2833-2842.e6.	3.9	39
22	Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1297-1308.	6.5	37
23	<i>SNHG16</i> as the miRNA <i>letâ€₹bâ€5p</i> sponge facilitates the G2/M and epithelialâ€mesenchymal transition by regulating <i>CDC25B</i> and <i>HMGA2</i> expression in hepatocellular carcinoma. Journal of Cellular Biochemistry, 2020, 121, 2543-2558.	2.6	35
24	Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients With Altered Gut Microbiota. Frontiers in Microbiology, 2021, 12, 712081.	3.5	35
25	New Insights into the Nonconserved Noncoding Region of the Subtype-Determinant Hemagglutinin and Neuraminidase Segments of Influenza A Viruses. Journal of Virology, 2014, 88, 11493-11503.	3.4	31
26	Cell membrane proteins with high N-glycosylation, high expression and multiple interaction partners are preferred by mammalian viruses as receptors. Bioinformatics, 2019, 35, 723-728.	4.1	31
27	Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset. Protein and Cell, 2015, 6, 297-306.	11.0	29
28	SARSâ€CoVâ€2: Mechanism of infection and emerging technologies for future prospects. Reviews in Medical Virology, 2021, 31, e2168.	8.3	28
29	Quantitative proteomics reveals ER- \hat{l}_{\pm} involvement in CD146-induced epithelial-mesenchymal transition in breast cancer cells. Journal of Proteomics, 2014, 103, 153-169.	2.4	26
30	Homologous recombination shapes the genetic diversity of African swine fever viruses. Veterinary Microbiology, 2019, 236, 108380.	1.9	26
31	Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Briefings in Bioinformatics, 2021, 22, 1267-1278.	6.5	26
32	Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses. MBio, 2018, 9, .	4.1	25
33	Generation of a Live Attenuated Influenza Vaccine that Elicits Broad Protection in Mice and Ferrets. Cell Host and Microbe, 2017, 21, 334-343.	11.0	24
34	A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures. Scientific Reports, 2017, 7, 42051.	3.3	22
35	Classification and characterization of multigene family proteins of African swine fever viruses. Briefings in Bioinformatics, 2021, 22, .	6.5	22
36	EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome. Nature Structural and Molecular Biology, 2016, 23, 125-131.	8.2	21

#	Article	IF	CITATIONS
37	Continual Antigenic Diversification in China Leads to Global Antigenic Complexity of Avian Influenza H5N1 Viruses. Scientific Reports, 2017, 7, 43566.	3.3	21
38	Evolutionary genotypes of influenza A (H7N9) viruses over five epidemic waves in China. Infection, Genetics and Evolution, 2017, 55, 269-276.	2.3	21
39	Regulation of Early Host Immune Responses Shapes the Pathogenicity of Avian Influenza A Virus. Frontiers in Microbiology, 2019, 10, 2007.	3.5	21
40	Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discovery, 2021, 7, 21.	6.7	20
41	Deamidation Shunts RelA from Mediating Inflammation to Aerobic Glycolysis. Cell Metabolism, 2020, 31, 937-955.e7.	16.2	19
42	Predicting the host of influenza viruses based on the word vector. PeerJ, 2017, 5, e3579.	2.0	19
43	Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PLoS Pathogens, 2015, 11, e1005001.	4.7	18
44	A novel index of protein-protein interface propensity improves interface residue recognition. BMC Systems Biology, 2016, 10, 112.	3.0	18
45	Co-mutation modules capture the evolution and transmission patterns of SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, .	6.5	18
46	Network of co-mutations in Ebola virus genome predicts the disease lethality. Cell Research, 2015, 25, 753-756.	12.0	17
47	Inferring the antigenic epitopes for highly pathogenic avian influenza H5N1 viruses. Vaccine, 2014, 32, 671-676.	3.8	15
48	Monitoring infectious diseases in the big data era. Science Bulletin, 2015, 60, 144-145.	9.0	13
49	GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes. BMC Genomics, 2017, 18, 952.	2.8	13
50	Cluster-Transition Determining Sites Underlying the Antigenic Evolution of Seasonal Influenza Viruses. Molecular Biology and Evolution, 2019, 36, 1172-1186.	8.9	13
51	Network-based methods for gene function prediction. Briefings in Functional Genomics, 2021, 20, 249-257.	2.7	13
52	Functional Genomics Reveals Linkers Critical for Influenza Virus Polymerase. Journal of Virology, 2016, 90, 2938-2947.	3.4	12
53	Screening for Novel Small-Molecule Inhibitors Targeting the Assembly of Influenza Virus Polymerase Complex by a Bimolecular Luminescence Complementation-Based Reporter System. Journal of Virology, 2017, 91, .	3.4	12
54	Plasma from patients with anti-glomerular basement membrane disease could recognize microbial peptides. PLoS ONE, 2017, 12, e0174553.	2.5	12

#	Article	IF	CITATIONS
55	Phage protein receptors have multiple interaction partners and high expressions. Bioinformatics, 2020, 36, 2975-2979.	4.1	12
56	Influenza activity during the outbreak of coronavirus disease 2019 in Chinese mainland. Biosafety and Health, 2020, 2, 206-209.	2.7	11
57	Prediction of the Receptorome for the Human-Infecting Virome. Virologica Sinica, 2021, 36, 133-140.	3.0	11
58	Prediction of antiviral drugs against African swine fever viruses based on protein–protein interaction analysis. PeerJ, 2020, 8, e8855.	2.0	11
59	Analysis of interactions between SNARE proteins using imaging ellipsometer coupled with microfluidic array. Scientific Reports, 2014, 4, 5341.	3.3	10
60	Protein interactome of the deamidase phosphoribosylformylglycinamidine synthetase (PFAS) by LC-MS/MS. Biochemical and Biophysical Research Communications, 2019, 513, 746-752.	2.1	10
61	Improvement in Low-Homology Template-Based Modeling by Employing a Model Evaluation Method with Focus on Topology. PLoS ONE, 2014, 9, e89935.	2.5	10
62	MetaDP: a comprehensive web server for disease prediction of 16S rRNA metagenomic datasets. Biophysics Reports, 2016, 2, 106-115.	0.8	9
63	FluReassort: a database for the study of genomic reassortments among influenza viruses. Briefings in Bioinformatics, 2020, 21, 2126-2132.	6.5	9
64	DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network. Briefings in Bioinformatics, 2021, 22, .	6.5	9
65	Host E3 ligase HUWE1 attenuates the proapoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation. Journal of Biological Chemistry, 2022, 298, 101584.	3.4	9
66	Integrating computational modeling and functional assays to decipher the structure-function relationship of influenza virus PB1 protein. Scientific Reports, 2015, 4, 7192.	3.3	8
67	Detection and typing of human-infecting influenza viruses in China by using a multiplex DNA biochip assay. Journal of Virological Methods, 2016, 234, 178-185.	2.1	8
68	PREDAC-H5: A user-friendly tool for the automated surveillance of antigenic variants for the HPAI H5N1 virus. Infection, Genetics and Evolution, 2014, 28, 62-63.	2.3	7
69	Antigenic variation of the human influenza A (H3N2) virus during the 2014–2015 winter season. Science China Life Sciences, 2015, 58, 882-888.	4.9	7
70	LATTE: A knowledge-based method to normalize various expressions of laboratory test results in free text of Chinese electronic health records. Journal of Biomedical Informatics, 2020, 102, 103372.	4.3	7
71	FluPhenotypeâ€"a one-stop platform for early warnings of the influenza A virus. Bioinformatics, 2020, 36, 3251-3253.	4.1	7
72	Constructing High-Fidelity Phenotype Knowledge Graphs for Infectious Diseases With a Fine-Grained Semantic Information Model: Development and Usability Study. Journal of Medical Internet Research, 2021, 23, e26892.	4.3	7

#	Article	IF	Citations
73	Exploring protein domain organization by recognition of secondary structure packing interfaces. Bioinformatics, 2014, 30, 2440-2446.	4.1	6
74	An atlas of human viruses provides new insights into diversity and tissue tropism of human viruses. Bioinformatics, 2022, 38, 3087-3093.	4.1	6
75	PREDAC-H3: a user-friendly platform for antigenic surveillance of human influenza a(H3N2) virus based on hemagglutinin sequences. Bioinformatics, 2016, 32, 2526-2527.	4.1	5
76	A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. ELife, 2017, 6, .	6.0	5
77	Genomeâ€wide RNAâ€Seq identifies <i>Fas</i> /i>FasLâ€ mediated tumoricidal activity of embryonic stem cells. International Journal of Cancer, 2018, 142, 1829-1841.	5.1	5
78	Trap1a is an X-linked and cell-intrinsic regulator of thymocyte development. Cellular and Molecular Immunology, 2017, 14, 685-692.	10.5	4
79	cooccurNet: an R package for co-occurrence network construction and analysis. Bioinformatics, 2017, 33, 1881-1882.	4.1	4
80	Progress and Challenge in Computational Identification of Influenza Virus Reassortment. Virologica Sinica, 2021, 36, 1273-1283.	3.0	4
81	Mapping Genetic Events of SARS-CoV-2 Variants. Frontiers in Microbiology, 0, 13, .	3.5	4
82	New targets for controlling Ebola virus disease. National Science Review, 2015, 2, 266-267.	9.5	3
83	Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human. Scientific Reports, 2017, 7, 14295.	3.3	3
84	Landscape of the genome and host cell response of <i>Mycobacterium shigaense</i> reveals pathogenic features. Emerging Microbes and Infections, 2018, 7, 1-13.	6.5	3
85	Identification of genome-wide nucleotide sites associated with mammalian virulence in influenza A viruses. Biosafety and Health, 2020, 2, 32-38.	2.7	3
86	The evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates. Scientific Reports, 2020, 10, 4126.	3.3	2
87	Large discrepancy between the two-way rNHT distances in hemagglutinin-inhibition assay. Virologica Sinica, 2016, 31, 441-443.	3.0	1
88	PREDAV-H1: a user-friendly web server for predicting antigenic variants of influenza H1N1 viruses. Science China Life Sciences, 2019, 62, 426-427.	4.9	1
89	Automated recommendation of the seasonal influenza vaccine strain with PREDAC. Biosafety and Health, 2020, 2, 117-119.	2.7	1
90	DSDatlas: disorders of sex development atlas for reproductive endocrinological-related gene discovery in integrative omics platforms. F&S Science, 2022, 3, 108-117.	0.9	1

Taijiao Jiang

#	Article	IF	CITATIONS
91	PIAT: An Evolutionarily Intelligent System for Deep Phenotyping of Chinese Electronic Health Records. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4142-4152.	6.3	1
92	Web-Weka Meets D3.js in Web Based Medical Data Mining. , 2015, , .		O
93	Prediction of influenza epidemics at the province level in China using search query from "Haosou― , 2015, , .		O