
Martina Mühlenhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The sialyl-O-acetylesterase NanS of Tannerella forsythia encompasses two catalytic modules with different regiospecificity for O7 and O9 of sialic acid. Glycobiology, 2021, 31, 1176-1191.	2.5	4
2	Role of Sialyl-O-Acetyltransferase CASD1 on GD2 Ganglioside O-Acetylation in Breast Cancer Cells. Cells, 2021, 10, 1468.	4.1	9
3	Structural and mechanistic basis of capsule O-acetylation in Neisseria meningitidis serogroup A. Nature Communications, 2020, 11, 4723.	12.8	11
4	Intrabodies against the Polysialyltransferases ST8Siall and ST8SialV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells. BMC Biotechnology, 2017, 17, 42.	3.3	9
5	Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract. Journal of Neuroscience, 2017, 37, 6558-6574.	3.6	8
6	Polysialylation and lipopolysaccharideâ€induced shedding of Eâ€selectin ligandâ€1 and neuropilinâ€2 by microglia and THPâ€1 macrophages. Glia, 2016, 64, 1314-1330.	4.9	63
7	Polysialic acid on SynCAM 1 in NG2 cells and on neuropilinâ€2 in microglia is confined to intracellular pools that are rapidly depleted upon stimulation. Glia, 2015, 63, 1240-1255.	4.9	37
8	Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells. Stem Cell Research, 2015, 14, 339-346.	0.7	18
9	9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nature Communications, 2015, 6, 7673.	12.8	90
10	Polysialic Acid: Versatile Modification of NCAM, SynCAM 1 and Neuropilin-2. Neurochemical Research, 2013, 38, 1134-1143.	3.3	87
11	Polysialic Acid on Neuropilin-2 Is Exclusively Synthesized by the Polysialyltransferase ST8SialV and Attached to Mucin-type O-Glycans Located between the b2 and c Domain. Journal of Biological Chemistry, 2013, 288, 22880-22892.	3.4	37
12	A Multivalent Adsorption Apparatus Explains the Broad Host Range of Phage phi92: a Comprehensive Genomic and Structural Analysis. Journal of Virology, 2012, 86, 10384-10398.	3.4	88
13	Polysialylation of the Synaptic Cell Adhesion Molecule 1 (SynCAM 1) Depends Exclusively on the Polysialyltransferase ST8Siall in Vivo. Journal of Biological Chemistry, 2012, 287, 35170-35180.	3.4	40
14	Glycomic strategy for efficient linkage analysis of di-, oligo- and polysialic acids. Journal of Proteomics, 2012, 75, 5266-5278.	2.4	16
15	Homeostatic regulation of NCAM polysialylation is critical for correct synaptic targeting. Cellular and Molecular Life Sciences, 2012, 69, 1179-1191.	5.4	19
16	Crystal Structure Analysis of the Polysialic Acid Specific O-Acetyltransferase NeuO. PLoS ONE, 2011, 6, e17403.	2.5	8
17	Structural Basis for the Recognition and Cleavage of Polysialic Acid by the Bacteriophage K1F Tailspike Protein EndoNF. Journal of Molecular Biology, 2010, 397, 341-351.	4.2	41
18	Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10250-10255.	7.1	148

Martina Mühlenhoff

#	Article	IF	CITATIONS
19	Polysialylation of NCAM. Advances in Experimental Medicine and Biology, 2010, 663, 95-109.	1.6	69
20	Proteolytic Release of the Intramolecular Chaperone Domain Confers Processivity to Endosialidase F. Journal of Biological Chemistry, 2009, 284, 9465-9474.	3.4	27
21	Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biological Chemistry, 2009, 390, 567-574.	2.5	45
22	Imbalance of neural cell adhesion molecule and polysialyltransferase alleles causes defective brain connectivity. Brain, 2009, 132, 2831-2838.	7.6	73
23	Oâ€acetyltransferase gene <i>neuO</i> is segregated according to phylogenetic background and contributes to environmental desiccation resistance in <i>Escherichia coli</i> K1. Environmental Microbiology, 2009, 11, 3154-3165.	3.8	24
24	Polysialic acid controls NCAMâ€induced differentiation of neuronal precursors into calretininâ€positive olfactory bulb interneurons. Developmental Neurobiology, 2008, 68, 1170-1184.	3.0	34
25	Polysialylation of NCAM. Neurochemical Research, 2008, , 95.	3.3	8
26	Enzyme-dependent Variations in the Polysialylation of the Neural Cell Adhesion Molecule (NCAM) in Vivo. Journal of Biological Chemistry, 2008, 283, 17-28.	3.4	54
27	Impact of the Polysialyltransferases ST8Siall and ST8SialV on Polysialic Acid Synthesis during Postnatal Mouse Brain Development. Journal of Biological Chemistry, 2008, 283, 1463-1471.	3.4	91
28	Biochemical Characterization of Thepolysialic Acid-specific O-Acetyltransferase NeuO of Escherichia coli K1. Journal of Biological Chemistry, 2007, 282, 22217-22227.	3.4	27
29	Characterization of a Novel Intramolecular Chaperone Domain Conserved in Endosialidases and Other Bacteriophage Tail Spike and Fiber Proteins. Journal of Biological Chemistry, 2007, 282, 2821-2831.	3.4	66
30	The Structures of Bacteriophages K1E and K1-5 Explain Processive Degradation of Polysaccharide Capsules and Evolution of New Host Specificities. Journal of Molecular Biology, 2007, 371, 836-849.	4.2	139
31	Characterization of Oligo- and Polysialic Acids by MALDI-TOF-MS. Analytical Chemistry, 2007, 79, 7161-7169.	6.5	41
32	Dissecting polysialic acid and NCAM functions in brain development. Journal of Neurochemistry, 2007, 103, 56-64.	3.9	120
33	Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Molecular Microbiology, 2006, 60, 1123-1135.	2.5	93
34	Polysialic Acid Profiles of Mice Expressing Variant Allelic Combinations of the Polysialyltransferases ST8Siall and ST8SialV. Journal of Biological Chemistry, 2006, 281, 31605-31615.	3.4	70
35	Crystal structure of the polysialic acid–degrading endosialidase of bacteriophage K1F. Nature Structural and Molecular Biology, 2005, 12, 90-96.	8.2	180
36	Genetic Ablation of Polysialic Acid Causes Severe Neurodevelopmental Defects Rescued by Deletion of the Neural Cell Adhesion Molecule. Journal of Biological Chemistry, 2005, 280, 42971-42977.	3.4	262

Martina Mühlenhoff

#	Article	IF	CITATIONS
37	Proteolytic Processing and Oligomerization of Bacteriophage-derived Endosialidases. Journal of Biological Chemistry, 2003, 278, 12634-12644.	3.4	55
38	Localization and characterization of polysialic acid-containing N-linked glycans from bovine NCAM. Glycobiology, 2002, 12, 47-63.	2.5	60
39	High affinity binding of long-chain polysialic acid to antibody, and modulation by divalent cations and polyamines. Molecular Immunology, 2002, 39, 399-411.	2.2	33
40	The Impact of N-Glycosylation on the Functions of Polysialyltransferases. Journal of Biological Chemistry, 2001, 276, 34066-34073.	3.4	42
41	Molecular Defects That Cause Loss of Polysialic Acid in the Complementation Group 2A10. Journal of Biological Chemistry, 2000, 275, 32861-32870.	3.4	22
42	Polysialic acid: three-dimensional structure, biosynthesis and function. Current Opinion in Structural Biology, 1998, 8, 558-564.	5.7	169
43	Polysialylation of NCAM by a single enzyme. Current Biology, 1996, 6, 1188-1191.	3.9	76
44	Molecular cloning and functional expression of bacteriophage PK1E-encoded endoneuraminidase Endo NE. Molecular Microbiology, 1995, 16, 441-450.	2.5	75
45	Molecular characterization of eukaryotic polysialyltransferase-1. Nature, 1995, 373, 715-718.	27.8	291