Laura D Alaniz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301123/publications.pdf

Version: 2024-02-01

279798 315739 1,581 59 23 38 citations h-index g-index papers 62 62 62 2192 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The effects of sulfated hyaluronan in breast, lung and colorectal carcinoma and monocytes/macrophages cells: Its role in angiogenesis and tumor progression. IUBMB Life, 2022, 74, 927-942.	3.4	5
2	Hyaluronan in the Extracellular Matrix of Hematological and Solid Tumors. Its Biological Effects. Biology of Extracellular Matrix, 2022, , 161-196.	0.3	2
3	The Hyaluronic Acid–CD44 Interaction in the Physio- and Pathological Stem Cell Niche. Biology of Extracellular Matrix, 2021, , 237-262.	0.3	2
4	Initial Identification of UDP-Glucose Dehydrogenase as a Prognostic Marker in Breast Cancer Patients, Which Facilitates Epirubicin Resistance and Regulates Hyaluronan Synthesis in MDA-MB-231 Cells. Biomolecules, 2021, 11, 246.	4.0	21
5	Up-regulation of pro-angiogenic molecules and events does not relate with an angiogenic switch in metastatic osteosarcoma cells but to cell survival features. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 447-459.	4.9	5
6	Syndecan-1 Depletion Has a Differential Impact on Hyaluronic Acid Metabolism and Tumor Cell Behavior in Luminal and Triple-Negative Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 5874.	4.1	10
7	Acceleration of TAA-Induced Liver Fibrosis by Stress Exposure Is Associated with Upregulation of Nerve Growth Factor and Glycopattern Deviations. International Journal of Molecular Sciences, 2021, 22, 5055.	4.1	3
8	Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Frontiers in Oncology, 2021, 11, 710061.	2.8	23
9	Antiproliferative and antiangiogenic effects of ammonium tetrathiomolybdate in a model of endometriosis. Life Sciences, 2021, 287, 120099.	4.3	7
10	Contribution of neural crest and GLAST ⁺ Wnt1 ⁺ bone marrow pericytes with liver fibrogenesis and/or regeneration. Liver International, 2020, 40, 977-987.	3.9	7
11	Hyaluronan Metabolism is Associated with DNA Repair Genes in Breast and Colorectal Cancer. Screening of Potential Progression Markers Using qPCR. Biomedicines, 2020, 8, 183.	3.2	2
12	Sirtuin 1 reduces hyaluronan synthase 2 expression by inhibiting nuclear translocation of NF-κB and expression of the long-noncoding RNA HAS2–AS1. Journal of Biological Chemistry, 2020, 295, 3485-3496.	3.4	43
13	Hyaluronan in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1245, 67-83.	1.6	32
14	Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS Journal, 2019, 286, 2870-2882.	4.7	88
15	Hyaluronan preconditioning of monocytes/macrophages affects their angiogenic behavior and regulation of <scp>TSG</scp> â€6 expression in a tumor typeâ€specific manner. FEBS Journal, 2019, 286, 3433-3449.	4.7	30
16	Determination of Cell-Surface Hyaluronan Through Flow Cytometry. Methods in Molecular Biology, 2019, 1952, 111-116.	0.9	1
17	Improving the Therapeutic Ability of Mesenchymal Stem/Stromal Cells for the Treatment of Conditions Influenced by Immune Cells. Stem Cells International, 2019, 2019, 1-2.	2.5	3
18	Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget, 2018, 9, 36585-36602.	1.8	16

#	Article	IF	Citations
19	Combination of 4-Methylumbelliferone and Adenoviral Gene Transfer of Interleukin-12 Reduced the Expression of Cancer Stem Cells Markers, and Showed a Potent Antitumor Effect in an Experimental Hepatocellular Carcinoma Model with Fibrosis. Journal of Hepatology, 2016, 64, S570.	3.7	0
20	Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions. PLoS ONE, 2016, 11, e0152302.	2.5	21
21	Abstract B178: 4-methylumbelliferone modulates tumor microenvironment improving the antitumor efficacy of combined gene-based immunotherapy in murine colon adenocarcinoma. , 2016, , .		0
22	The immunological effect of hyaluronan in tumor angiogenesis. Clinical and Translational Immunology, 2015, 4, e52.	3.8	46
23	Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma. Molecular Therapy, 2015, 23, 1444-1455.	8.2	18
24	4-Methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis. Glycobiology, 2015, 25, 825-835.	2.5	48
25	SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage. Gene Therapy, 2015, 22, 9-19.	4.5	23
26	Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice. Stem Cells and Development, 2015, 24, 791-801.	2.1	63
27	Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e95171.	2.5	42
28	Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor. BioMed Research International, 2014, 2014, 1-9.	1.9	14
29	P631 MESENCHYMAL STROMAL CELLS ENGINEERED TO PRODUCE IGF-I AMELIORATE LIVER FIBROSIS IN MICE. Journal of Hepatology, 2014, 60, S279.	3.7	0
30	Dendritic cells regulate angiogenesis associated with liver fibrogenesis. Angiogenesis, 2014, 17, 119-128.	7.2	19
31	O143 SPARC (SECRETED PROTEIN ACIDIC AND RICH IN CYSTEINE) DEFICIENCY PROTECTS FROM CONCANAVALIN A-INDUCED HEPATITIS IN MICE. Journal of Hepatology, 2014, 60, S60.	3.7	0
32	Pulsing Dendritic Cells with Whole Tumor Cell Lysates. Methods in Molecular Biology, 2014, 1139, 27-31.	0.9	20
33	Low Molecular Weight Hyaluronan-Pulsed Human Dendritic Cells Showed Increased Migration Capacity and Induced Resistance to Tumor Chemoattraction. PLoS ONE, 2014, 9, e107944.	2.5	20
34	Ex Vivo Loading of Autologous Dendritic Cells with Tumor Antigens. Methods in Molecular Biology, 2014, 1139, 41-44.	0.9	2
35	Lack of the Matricellular Protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) Attenuates Liver Fibrogenesis in Mice. PLoS ONE, 2013, 8, e54962.	2.5	43
36	Antiâ€ŧumor effect of SLPI on mammary but not colon tumor growth. Journal of Cellular Physiology, 2013, 228, 469-475.	4.1	9

#	Article	IF	CITATIONS
37	Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology, 2012, 22, 400-410.	2.5	91
38	Chemoimmunotherapy for advanced gastrointestinal carcinomas: A successful combination of gene therapy and cyclophosphamide. Oncolmmunology, 2012, 1, 1626-1628.	4.6	4
39	Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice. Oncolmmunology, 2012, 1, 1038-1047.	4.6	22
40	Glycosaminoglycans Metabolism. Biochemistry Research International, 2012, 2012, 1-2.	3.3	2
41	Reversal of gastrointestinal carcinomaâ€induced immunosuppression and induction of antitumoural immunity by a combination of cyclophosphamide and gene transfer of ILâ€12. Molecular Oncology, 2011, 5, 242-255.	4.6	32
42	Hepatocellular Carcinoma Cells and Their Fibrotic Microenvironment Modulate Bone Marrow-Derived Mesenchymal Stromal Cell Migration <i>in Vitro</i> and <i>in Vivo</i> Molecular Pharmaceutics, 2011, 8, 1538-1548.	4.6	72
43	Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma. Cancer Immunology, Immunotherapy, 2011, 60, 1383-1395.	4.2	21
44	SPARC downregulation attenuates the profibrogenic response of hepatic stellate cells induced by TGF- \hat{l}^2 (sub>1/sub>and PDGF. American Journal of Physiology - Renal Physiology, 2011, 300, G739-G748.	3.4	36
45	Overexpression of SPARC obliterates the <i>in vivo</i> tumorigenicity of human hepatocellular carcinoma cells. International Journal of Cancer, 2010, 126, 2726-2740.	5.1	38
46	Hyaluronan induces migration of multidrug-resistant lymphoma cell lines in vitro through Tiam1 activation by a PI3K-dependent mechanism. Leukemia Research, 2010, 34, 1525-1532.	0.8	12
47	A Novel Synergistic Combination of Cyclophosphamide and Gene Transfer of Interleukin-12 Eradicates Colorectal Carcinoma in Mice. Clinical Cancer Research, 2009, 15, 7256-7265.	7.0	37
48	Murine Abortion is Associated with Enhanced Hyaluronan Expression and Abnormal Localization at the Fetomaternal Interface. Placenta, 2009, 30, 88-95.	1.5	21
49	Immunotherapy for liver tumors: present status and future prospects. Journal of Biomedical Science, 2009, 16, 30.	7.0	23
50	PI3K/Akt inhibition modulates multidrug resistance and activates NF-κB in murine lymphoma cell lines. Leukemia Research, 2009, 33, 288-296.	0.8	74
51	Low molecular weight hyaluronan inhibits colorectal carcinoma growth by decreasing tumor cell proliferation and stimulating immune response. Cancer Letters, 2009, 278, 9-16.	7.2	57
52	Altered Hyaluronan Biosynthesis and Cancer Progression: an Immunological Perspective. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1538-1546.	2.4	20
53	Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating Pâ€glycoprotein activity and Pl3K/Akt pathway. International Journal of Cancer, 2008, 122, 1012-1018.	5.1	72
54	Adenovirusâ€mediated inhibition of SPARC attenuates liver fibrosis in rats. Journal of Gene Medicine, 2008, 10, 993-1004.	2.8	53

#	ARTICLE	IF	CITATION
55	Hyaluronan oligosaccharides induce cell death through PI3-K/Akt pathway independently of NF-κB transcription factor. Glycobiology, 2006, 16, 359-367.	2.5	32
56	Inhibition of NF-κB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leukemia Research, 2005, 29, 1425-1434.	0.8	83
57	CD44 and hyaluronic acid regulate in vivo iNOS expression and metalloproteinase activity in murine air-pouch inflammation. Inflammation Research, 2004, 53, 556-566.	4.0	12
58	Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-κB activity in lymphoma cell lines with dissimilar invasive behavior. Biochemical and Biophysical Research Communications, 2004, 324, 736-743.	2.1	34
59	Interaction of CD44 with Different Forms of Hyaluronic Acid. Its Role in Adhesion and Migration of Tumor Cells. Cell Communication and Adhesion, 2002, 9, 117-130.	1.0	37