
## Noriyuki Kasahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5300775/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma.<br>Science Translational Medicine, 2016, 8, 341ra75.                                                                                                           | 12.4 | 158       |
| 2  | Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca<br>FC. Neuro-Oncology, 2018, 20, 1383-1392.                                                                                                                | 1.2  | 135       |
| 3  | Design and Selection of Toca 511 for Clinical Use: Modified Retroviral Replicating Vector With<br>Improved Stability and Gene Expression. Molecular Therapy, 2012, 20, 1689-1698.                                                                               | 8.2  | 119       |
| 4  | Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine<br>to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro-Oncology, 2012, 14, 145-159.                                                         | 1.2  | 117       |
| 5  | Single-Shot, Multicycle Suicide Gene Therapy by Replication-Competent Retrovirus Vectors Achieves<br>Long-Term Survival Benefit in Experimental Glioma. Molecular Therapy, 2005, 12, 842-851.                                                                   | 8.2  | 105       |
| 6  | Highly Efficient and Tumor-Restricted Gene Transfer to Malignant Gliomas by Replication-Competent<br>Retroviral Vectors. Human Gene Therapy, 2003, 14, 117-127.                                                                                                 | 2.7  | 82        |
| 7  | A Uniquely Stable Replication-Competent Retrovirus Vector Achieves Efficient Gene Deliveryin<br>Vitroand in Solid Tumors. Human Gene Therapy, 2001, 12, 921-932.                                                                                                | 2.7  | 81        |
| 8  | Replication-competent retrovirus vectors for cancer gene therapy. Frontiers in Bioscience - Landmark, 2008, 13, 3083.                                                                                                                                           | 3.0  | 68        |
| 9  | Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro-Oncology, 2017, 19, 930-939.                                                                                        | 1.2  | 65        |
| 10 | Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and<br>non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO<br>Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.                   | 1.2  | 59        |
| 11 | Therapeutic Efficacy of Replication-Competent Retrovirus Vector–Mediated Suicide Gene Therapy in a<br>Multifocal Colorectal Cancer Metastasis Model. Cancer Research, 2007, 67, 5345-5353.                                                                      | 0.9  | 56        |
| 12 | Intravenous Administration of Retroviral Replicating Vector, Toca 511, Demonstrates Therapeutic<br>Efficacy in Orthotopic Immune-Competent Mouse Glioma Model. Human Gene Therapy, 2015, 26, 82-93.                                                             | 2.7  | 55        |
| 13 | Resistance to cytotoxicity and sustained release of interleukin-6 and interleukin-8 in the presence of<br>decreased interferon-γ after differentiation of glioblastoma by human natural killer cells. Cancer<br>Immunology, Immunotherapy, 2016, 65, 1085-1097. | 4.2  | 54        |
| 14 | Tissue-Specific Transcriptional Targeting of a Replication-Competent Retroviral Vector. Journal of Virology, 2002, 76, 12783-12791.                                                                                                                             | 3.4  | 51        |
| 15 | Beyond Oncolytic Virotherapy: Replication-Competent Retrovirus Vectors for Selective and Stable<br>Transduction of Tumors. Current Gene Therapy, 2005, 5, 655-667.                                                                                              | 2.0  | 50        |
| 16 | Retroviral replicating vector–mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro-Oncology, 2017, 19, 918-929.                                                                                 | 1.2  | 41        |
| 17 | Optimization of enzyme–substrate pairing for bioluminescence imaging of gene transfer using<br><i>Renilla</i> and <i>Gaussia</i> luciferases. Journal of Gene Medicine, 2010, 12, 528-537.                                                                      | 2.8  | 31        |
| 18 | Radiosensitization of gliomas by intracellular generation of 5-fluorouracil potentiates prodrug<br>activator gene therapy with a retroviral replicating vector. Cancer Gene Therapy, 2014, 21, 405-410.                                                         | 4.6  | 30        |

Noriyuki Kasahara

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tumor-Selective Gene Expression in a Hepatic Metastasis Model after Locoregional Delivery of a<br>Replication-Competent Retrovirus Vector. Clinical Cancer Research, 2006, 12, 7108-7116.                          | 7.0 | 29        |
| 20 | Highly Efficient Gene Delivery for Bladder Cancers by Intravesically Administered<br>Replication-Competent Retroviral Vectors. Clinical Cancer Research, 2007, 13, 4511-4518.                                      | 7.0 | 29        |
| 21 | Short Conserved Sequences of HIV-1 Are Highly Immunogenic and Shift Immunodominance. Journal of Virology, 2015, 89, 1195-1204.                                                                                     | 3.4 | 27        |
| 22 | A Retroviral Replicating Vector Encoding Cytosine Deaminase and 5-FC Induces Immune Memory in Metastatic Colorectal Cancer Models. Molecular Therapy - Oncolytics, 2018, 8, 14-26.                                 | 4.4 | 26        |
| 23 | Selectively Replicating Adenoviruses for Oncolytic Therapy. Current Cancer Drug Targets, 2001, 1, 85-107.                                                                                                          | 1.6 | 24        |
| 24 | Renal Transplant Patients Biopsied for Cause and Tested for C4d, DSA, and IgG Subclasses and C1q:<br>Which Humoral Markers Improve Diagnosis and Outcomes?. Journal of Immunology Research, 2017,<br>2017, 1-14.   | 2.2 | 20        |
| 25 | A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic<br>Medulloblastoma. Clinical Cancer Research, 2019, 25, 1379-1388.                                                      | 7.0 | 20        |
| 26 | Retroviral Replicating Vectors in Cancer. Methods in Enzymology, 2012, 507, 199-228.                                                                                                                               | 1.0 | 19        |
| 27 | Epithelial membrane protein-2 (EMP2) promotes angiogenesis in glioblastoma multiforme. Journal of<br>Neuro-Oncology, 2017, 134, 29-40.                                                                             | 2.9 | 19        |
| 28 | Therapeutic activity of retroviral replicating vector-mediated prodrug activator gene therapy for pancreatic cancer. Cancer Gene Therapy, 2018, 25, 184-195.                                                       | 4.6 | 14        |
| 29 | Retrovirus-Mediated Gene Transfer to Tumors: Utilizing the Replicative Power of Viruses to Achieve<br>Highly Efficient Tumor Transduction In Vivo. , 2004, 246, 499-526.                                           |     | 13        |
| 30 | Dual-vector prodrug activator gene therapy using retroviral replicating vectors. Cancer Gene<br>Therapy, 2019, 26, 128-135.                                                                                        | 4.6 | 13        |
| 31 | Factors in the Selection of Surface Disinfectants for Use in a Laboratory Animal Setting. Journal of the American Association for Laboratory Animal Science, 2016, 55, 175-88.                                     | 1.2 | 13        |
| 32 | Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer. Expert<br>Opinion on Biological Therapy, 2021, 21, 1199-1214.                                                           | 3.1 | 11        |
| 33 | Introduction to immunotherapy for brain tumor patients: challenges and future perspectives.<br>Neuro-Oncology Practice, 2020, 7, 465-476.                                                                          | 1.6 | 10        |
| 34 | Efficient Prodrug Activator Gene Therapy by Retroviral Replicating Vectors Prolongs Survival in an<br>Immune-Competent Intracerebral Glioma Model. International Journal of Molecular Sciences, 2020, 21,<br>1433. | 4.1 | 10        |
| 35 | Efficient tumor transduction and antitumor efficacy in experimental human osteosarcoma using retroviral replicating vectors. Cancer Gene Therapy, 2019, 26, 41-47.                                                 | 4.6 | 8         |
| 36 | Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies. Journal of Neuro-Oncology, 2021, 152, 1-13.                                                          | 2.9 | 7         |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combinatorial anti-angiogenic gene therapy in a human malignant mesothelioma model. Oncology<br>Reports, 2015, 34, 633-638.                                                                                                                                          | 2.6 | 4         |
| 38 | Extensive Replication of a Retroviral Replicating Vector Can Expand the A Bulge in the<br>Encephalomyocarditis Virus Internal Ribosome Entry Site and Change Translation Efficiency of the<br>Downstream Transgene. Human Gene Therapy Methods, 2016, 27, 59-70.     | 2.1 | 3         |
| 39 | EXTH-33. RETROVIRAL REPLICATING VECTORS PSEUDOTYPED WITH GIBBON APE LEUKEMIA VIRUS ENVELOPE<br>FOR PRODRUG ACTIVATOR GENE THERAPY IN PRECLINICAL GLIOMA MODELS. Neuro-Oncology, 2021, 23,<br>vi170-vi170.                                                            | 1.2 | 1         |
| 40 | THER-06. THERAPEUTIC EFFICACY OF RRV-MEDIATED PRODRUG ACTIVATOR GENE THERAPY IN CLINICAL TRIALS OF RECURRENT HIGH-GRADE GLIOMA AND IN MURINE ORTHOTOPIC MODELS OF INTRACEREBRAL GLIOMA AND INTRACEREBELLAR MEDULLOBLASTOMA. Neuro-Oncology, 2020, 22, iii472-iii472. | 1.2 | 0         |
| 41 | EXTH-65. INSERTION OF MICRORNA TARGET SEQUENCES INTO RETROVIRAL REPLICATING VECTORS<br>EFFECTIVELY RESTRICTS TRANSGENE EXPRESSION AND VIRAL REPLICATION IN HUMAN HEMATOPOIETIC STEM<br>AND PROGENITOR CELLS. Neuro-Oncology, 2021, 23, vi178-vi178.                  | 1.2 | 0         |
| 42 | EXTH-13. LOCAL DELIVERY OF AN IL-15 SUPERAGONIST USING A REPLICATING RETROVIRUS SIGNIFICANTLY IMPROVES SURVIVAL AND LYMPHOCYTE INFILTRATION IN POORLY IMMUNOGENIC MURINE GLIOBLASTOMA MODELS. Neuro-Oncology, 2021, 23, vi166-vi166.                                 | 1.2 | 0         |