
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5300265/publications.pdf Version: 2024-02-01

LOSEDH C MUL

#	Article	IF	CITATIONS
1	Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovascular Research, 2022, 118, 20-36.	1.8	27
2	The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Seminars in Cell and Developmental Biology, 2022, 122, 56-65.	2.3	7
3	Adverse effects of air pollutionâ€derived fine particulate matter on cardiovascular homeostasis and disease. Trends in Cardiovascular Medicine, 2022, 32, 487-498.	2.3	12
4	Heterozygous LMNA mutation-carrying iPSC lines from three cardiac laminopathy patients. Stem Cell Research, 2022, 59, 102657.	0.3	0
5	Generation of three iPSC lines from dilated cardiomyopathy patients carrying a pathogenic LMNA variant. Stem Cell Research, 2022, 59, 102638.	0.3	0
6	Cardiac reprogramming via chromatin remodeling by CRISPR activation. Molecular Therapy, 2022, 30, 6-7.	3.7	0
7	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	6.1	21
8	Vein to artery: the first arteriogenesis in the mammalian embryo. Cell Research, 2022, 32, 325-326.	5.7	0
9	New Insights Into the Molecular Underpinnings of LVNC. Circulation, 2022, 145, 603-605.	1.6	2
10	Activation of PDGFRA signaling contributes to filamin C–related arrhythmogenic cardiomyopathy. Science Advances, 2022, 8, eabk0052.	4.7	12
11	Sex-Specific Cardiovascular Risks of Cancer and Its Therapies. Circulation Research, 2022, 130, 632-651.	2.0	29
12	Deconvoluting the Cells of the Human Heart with iPSC Technology: Cell Types, Protocols, and Uses. Current Cardiology Reports, 2022, 24, 487-496.	1.3	4
13	Innovations in Undergraduate Research Training Through Multisite Collaborative Programming: American Heart Association Summer Undergraduate Research Experience Syndicate. Journal of the American Heart Association, 2022, 11, e022380.	1.6	3
14	Population-based high-throughput toxicity screen of human iPSC-derived cardiomyocytes and neurons. Cell Reports, 2022, 39, 110643.	2.9	13
15	Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell, 2022, 29, 503-514.	5.2	39
16	Ferroptosis of Pacemaker Cells in COVID-19. Circulation Research, 2022, 130, 978-980.	2.0	4
17	Generation of two iPSC lines from hypertrophic cardiomyopathy patients carrying MYBPC3 and PRKAG2 variants. Stem Cell Research, 2022, 61, 102774.	0.3	4
18	Utilization of induced pluripotent stem cells to model the molecular network regulating congenital heart disease. Cardiovascular Research, 2022, 118, 664-666.	1.8	1

#	Article	IF	CITATIONS
19	The effects of xeno-free cryopreservation on the contractile properties of human iPSC derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2022, 168, 107-114.	0.9	2
20	Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell–Derived Cardiac Organoids and Single-Cell RNA Sequencing. Circulation, 2022, 145, 1367-1369.	1.6	6
21	Generation of Embryonic Origin-Specific Vascular Smooth Muscle Cells from Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2429, 233-246.	0.4	3
22	Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nature Communications, 2022, 13, 2253.	5.8	25
23	Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell, 2022, 185, 1676-1693.e23.	13.5	40
24	Intersectionality and genetic ancestry: New methods to solve old problems. EBioMedicine, 2022, 80, 104049.	2.7	1
25	Cellular and Engineered Organoids for Cardiovascular Models. Circulation Research, 2022, 130, 1780-1802.	2.0	27
26	Modeling Susceptibility to Cardiotoxicity in Cancer Therapy Using Human iPSC-Derived Cardiac Cells and Systems Biology. Heart Failure Clinics, 2022, 18, 335-347.	1.0	1
27	KMT2D-NOTCH Mediates Coronary Abnormalities in Hypoplastic Left Heart Syndrome. Circulation Research, 2022, 131, 280-282.	2.0	3
28	Human induced pluripotent stem cells for studying mitochondrial diseases in the heart. FEBS Letters, 2022, 596, 1735-1745.	1.3	7
29	Shifting machine learning for healthcare from development to deployment and from models to data. Nature Biomedical Engineering, 2022, 6, 1330-1345.	11.6	69
30	Generation of human induced pluripotent stem cell lines carrying heterozygous PLN mutation from dilated cardiomyopathy patients. Stem Cell Research, 2022, 63, 102855.	0.3	3
31	Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue. Cardiovascular Research, 2021, 117, 2125-2136.	1.8	12
32	Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovascular Research, 2021, 117, 694-711.	1.8	10
33	Therapeutic genome editing in cardiovascular diseases. Advanced Drug Delivery Reviews, 2021, 168, 147-157.	6.6	23
34	Sanjiv Sam Gambhir, MD, PhD (1962-2020). Journal of Nuclear Cardiology, 2021, 28, 30-33.	1.4	0
35	Effects of Cryopreservation on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Assessing Drug Safety Response Profiles. Stem Cell Reports, 2021, 16, 168-181.	2.3	10
36	CRISPRi/a Screening with Human iPSCs. Methods in Molecular Biology, 2021, 2320, 261-281.	0.4	13

JOSEPH C. WU

#	Article	IF	CITATIONS
37	Race and Genetics in Congenital Heart Disease: Application of iPSCs, Omics, and Machine Learning Technologies. Frontiers in Cardiovascular Medicine, 2021, 8, 635280.	1.1	15
38	Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Scientific Reports, 2021, 11, 4067.	1.6	46
39	Human Induced Pluripotent Stem Cells as a Screening Platform for Drug-Induced Vascular Toxicity. Frontiers in Pharmacology, 2021, 12, 613837.	1.6	6
40	Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100334.	0.5	24
41	Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells. Circulation Research, 2021, 128, 670-686.	2.0	35
42	Fabrication of 3D Cardiac Microtissue Arrays using Human iPSC-Derived Cardiomyocytes, Cardiac Fibroblasts, and Endothelial Cells. Journal of Visualized Experiments, 2021, , .	0.2	8
43	Clinical Trial in a Dish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1019-1031.	1.1	21
44	A call to action for new global approaches to cardiovascular disease drug solutions. European Heart Journal, 2021, 42, 1464-1475.	1.0	29
45	Method for selective ablation of undifferentiated human pluripotent stem cell populations for cell-based therapies. JCI Insight, 2021, 6, .	2.3	8
46	ALDH1A3 Coordinates Metabolism With Gene Regulation in Pulmonary Arterial Hypertension. Circulation, 2021, 143, 2074-2090.	1.6	34
47	Generation of two heterozygous MYBPC3 mutation-carrying human iPSC lines, SCVIi001-A and SCVIi002-A, for modeling hypertrophic cardiomyopathy. Stem Cell Research, 2021, 53, 102279.	0.3	5
48	Small-molecule probe reveals a kinase cascade that links stress signaling to TCF/LEF and Wnt responsiveness. Cell Chemical Biology, 2021, 28, 625-635.e5.	2.5	5
49	Generation of three induced pluripotent stem cell lines, SCVIi003-A, SCVIi004-A, SCVIi005-A, from patients with ARVD/C caused by heterozygous mutations in the PKP2 gene. Stem Cell Research, 2021, 53, 102284.	0.3	4
50	Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 2021, 28, 938-954.e9.	5.2	61
51	Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Reports, 2021, 16, 1542-1554.	2.3	25
52	Macrophages: Potential Therapeutic Target of Myocardial Injury in COVID-19. Circulation Research, 2021, 129, 47-49.	2.0	2
53	Antitumor effects of iPSC-based cancer vaccine in pancreatic cancer. Stem Cell Reports, 2021, 16, 1468-1477.	2.3	26
54	A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation, 2021, 144, 159-169.	1.6	18

#	Article	IF	CITATIONS
55	Abstract 1334: CCR5 inhibitors enhance doxorubicin-induced breast cancer cell killing while reducing cardiotoxicity. , 2021, , .		0
56	Endocardial/endothelial angiocrines regulate cardiomyocyte development and maturation and induce features of ventricular non-compaction. European Heart Journal, 2021, 42, 4264-4276.	1.0	41
57	Generation of three heterozygous KCNH2 mutation-carrying human induced pluripotent stem cell lines for modeling LQT2 syndrome. Stem Cell Research, 2021, 54, 102402.	0.3	4
58	An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging, 2021, 1, 598-615.	5.3	202
59	Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying MYH7 mutations. Stem Cell Research, 2021, 55, 102455.	0.3	2
60	Reconstructing the heart using iPSCs: Engineering strategies and applications. Journal of Molecular and Cellular Cardiology, 2021, 157, 56-65.	0.9	41
61	Leaders in Cardiovascular Research: Joseph C. Wu. Cardiovascular Research, 2021, 117, e126-e128.	1.8	1
62	Generation of three induced pluripotent stem cell lines (SCVIi014-A, SCVIi015-A, and SCVIi016-A) from patients with LQT1 caused by heterozygous mutations in the KCNQ1 gene. Stem Cell Research, 2021, 55, 102492.	0.3	0
63	Highlights from Stanford Drug Discovery Symposium 2021. Cardiovascular Research, 2021, 117, e132-e134.	1.8	0
64	Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes. Stem Cell Reports, 2021, 16, 2169-2181.	2.3	23
65	Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends in Genetics, 2021, 37, 1109-1123.	2.9	14
66	Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation, 2021, 144, 1714-1731.	1.6	90
67	Protocol to measure contraction, calcium, and action potential in human-induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100859.	0.5	12
68	Basic and Translational Research in Cardiac Repair and Regeneration. Journal of the American College of Cardiology, 2021, 78, 2092-2105.	1.2	42
69	Generation of two induced pluripotent stem cell lines from Brugada syndrome affected patients carrying SCN5A mutations. Stem Cell Research, 2021, 57, 102605.	0.3	2
70	Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations. Stem Cell Research, 2021, 57, 102597.	0.3	1
71	Modeling Transposition of the Great Arteries with Patient-Specific Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 13270.	1.8	3
72	Preoperative Computed Tomography Angiography Reveals Leaflet-Specific Calcification and Excursion Patterns in Aortic Stenosis. Circulation: Cardiovascular Imaging, 2021, 14, 1122-1132.	1.3	2

#	Article	IF	CITATIONS
73	Improving the engraftment and integration of cell transplantation for cardiac regeneration. Cardiovascular Research, 2020, 116, 473-475.	1.8	14
74	Reversible Mitochondrial Fragmentation in iPSC-Derived Cardiomyocytes From Children With DCMA, a Mitochondrial Cardiomyopathy. Canadian Journal of Cardiology, 2020, 36, 554-563.	0.8	27
75	Total Microfluidic chip for Multiplexed diagnostics (ToMMx). Biosensors and Bioelectronics, 2020, 150, 111930.	5.3	14
76	Immune biomarkers link air pollution exposure to blood pressure in adolescents. Environmental Health, 2020, 19, 108.	1.7	23
77	Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell, 2020, 27, 574-589.e8.	5.2	89
78	Single-cell protein expression of hiPSC-derived cardiomyocytes using Single-Cell Westerns. Journal of Molecular and Cellular Cardiology, 2020, 149, 115-122.	0.9	5
79	COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 2020, 17, 543-558.	6.1	999
80	Primer on Biomarker Discovery in Cardio-Oncology. JACC: CardioOncology, 2020, 2, 379-384.	1.7	14
81	Clinical trial in a dish using iPSCs shows lovastatin improves endothelial dysfunction and cellular cross-talk in LMNA cardiomyopathy. Science Translational Medicine, 2020, 12, .	5.8	56
82	Modeling Secondary Iron Overload Cardiomyopathy with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107886.	2.9	27
83	Tumor Repressor Circular RNA as a New Target for Preventative Gene Therapy Against Doxorubicin-Induced Cardiotoxicity. Circulation Research, 2020, 127, 483-485.	2.0	5
84	Generation of Quiescent Cardiac Fibroblasts Derived from Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2020, , 109-115.	0.4	7
85	Endogenous Retrovirus-Derived IncRNA BANCR Promotes Cardiomyocyte Migration in Humans and Non-human Primates. Developmental Cell, 2020, 54, 694-709.e9.	3.1	37
86	Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107925.	2.9	198
87	Induced pluripotent stem cells as a platform to understand patientâ€specific responses to opioids and anaesthetics. British Journal of Pharmacology, 2020, 177, 4581-4594.	2.7	7
88	An extracellular matrix paradox in myocardial scar formation. Signal Transduction and Targeted Therapy, 2020, 5, 151.	7.1	3
89	Atlas of Exosomal microRNAs Secreted From Human iPSC-Derived Cardiac Cell Types. Circulation, 2020, 142, 1794-1796.	1.6	17
90	A computational model of induced pluripotent stem-cell derived cardiomyocytes for high throughput risk stratification of KCNQ1 genetic variants. PLoS Computational Biology, 2020, 16, e1008109.	1.5	20

#	Article	IF	CITATIONS
91	Copy number variant hotspots in Han Taiwanese population induced pluripotent stem cell lines - lessons from establishing the Taiwan human disease iPSC Consortium Bank. Journal of Biomedical Science, 2020, 27, 92.	2.6	9
92	Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation, 2020, 142, 1848-1862.	1.6	157
93	Molecular Imaging of Infective Endocarditis With 6′′-[¹⁸ F]Fluoromaltotriose Positron Emission Tomography–Computed Tomography. Circulation, 2020, 141, 1729-1731.	1.6	9
94	Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nature Reviews Cardiology, 2020, 17, 457-473.	6.1	174
95	Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload–Induced Heart Failure. Circulation: Heart Failure, 2020, 13, e006298.	1.6	15
96	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	4.9	213
97	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	5.2	112
98	Highâ€ŧhroughput Preparation of DNA, RNA, and Protein from Cryopreserved Human iPSCs for Multiâ€omics Analysis. Current Protocols in Stem Cell Biology, 2020, 54, e114.	3.0	2
99	RNA Sequencing Analysis of Induced Pluripotent Stem Cell-Derived Cardiomyocytes From Congenital Heart Disease Patients. Circulation Research, 2020, 126, 923-925.	2.0	17
100	Patient and Disease–Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacological Reviews, 2020, 72, 320-342.	7.1	121
101	Levitating Cells to Sort the Fit and the Fat. Advanced Biology, 2020, 4, 1900300.	3.0	15
102	Cardiovascular Risks in Patients with COVID-19: Potential Mechanisms and Areas of Uncertainty. Current Cardiology Reports, 2020, 22, 34.	1.3	51
103	Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI. Scientific Reports, 2020, 10, 5983.	1.6	7
104	Simple Lithography-Free Single Cell Micropatterning using Laser-Cut Stencils. Journal of Visualized Experiments, 2020, , .	0.2	10
105	Molecular Signatures of Beneficial Class Effects of Statins on Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation, 2020, 141, 1208-1210.	1.6	6
106	Using Bioengineered Bioluminescence to Track Stem Cell Transplantation In Vivo. Methods in Molecular Biology, 2020, 2126, 1-11.	0.4	3
107	Human pluripotent stem cells for cardiac regeneration. , 2020, , 245-257.		0
108	Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews, 2019, 140, 3-11.	6.6	72

#	Article	IF	CITATIONS
109	Induced pluripotent stem cells as a novel cancer vaccine. Expert Opinion on Biological Therapy, 2019, 19, 1191-1197.	1.4	10
110	Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature, 2019, 572, 335-340.	13.7	136
111	Generation of Quiescent Cardiac Fibroblasts From Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circulation Research, 2019, 125, 552-566.	2.0	101
112	A computational model of induced pluripotent stemâ€cell derived cardiomyocytes incorporating experimental variability from multiple data sources. Journal of Physiology, 2019, 597, 4533-4564.	1.3	87
113	Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution. Circulation Research, 2019, 125, 379-397.	2.0	120
114	Clinical Trial in a Dish: Personalized Stem Cell–Derived Cardiomyocyte Assay Compared With Clinical Trial Results for Two <scp>QT</scp> â€Prolonging Drugs. Clinical and Translational Science, 2019, 12, 687-697.	1.5	42
115	Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nature Medicine, 2019, 25, 1280-1289.	15.2	494
116	Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1317-1329.	1.1	67
117	Workshop Report. Circulation Research, 2019, 125, 855-867.	2.0	53
118	Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Reports, 2019, 13, 960-969.	2.3	62
119	Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circulation Research, 2019, 125, 653-658.	2.0	53
120	Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circulation Research, 2019, 125, e75-e92.	2.0	103
121	Myocardial viability of the peri-infarct region measured by T1 mapping post manganese-enhanced MRI correlates with LV dysfunction. International Journal of Cardiology, 2019, 281, 8-14.	0.8	2
122	Modeling Cardiovascular Risks of E-Cigarettes With Human-Induced Pluripotent Stem Cell–Derived Endothelial Cells. Journal of the American College of Cardiology, 2019, 73, 2722-2737.	1.2	108
123	Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal, 2019, 40, 3685-3695.	1.0	100
124	Induced Pluripotent Stem Cell-Based Cancer Vaccines. Frontiers in Immunology, 2019, 10, 1510.	2.2	31
125	Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development. Development (Cambridge), 2019, 146, .	1.2	71
126	<i>RRAD</i> mutation causes electrical and cytoskeletal defects in cardiomyocytes derived from a familial case of Brugada syndrome. European Heart Journal, 2019, 40, 3081-3094.	1.0	48

#	Article	IF	CITATIONS
127	Stanford Cardiovascular Institute. Circulation Research, 2019, 124, 1420-1424.	2.0	4
128	Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes asÂaÂModel to Study Trypanosoma cruzi Infection. Stem Cell Reports, 2019, 12, 1232-1241.	2.3	29
129	Proteasome-Dependent Regulation of Distinct Metabolic States During Long-Term Culture of Human iPSC-Derived Cardiomyocytes. Circulation Research, 2019, 125, 90-103.	2.0	52
130	The West coast regional safety pharmacology society meeting update: Filling translational gaps in safety assessment. Journal of Pharmacological and Toxicological Methods, 2019, 98, 106582.	0.3	2
131	Identifying the Transcriptome Signatures of Calcium Channel Blockers in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2019, 125, 212-222.	2.0	27
132	Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports, 2019, 12, 772-786.	2.3	47
133	A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles. Cell Stem Cell, 2019, 24, 802-811.e5.	5.2	102
134	Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation, 2019, 139, 2451-2465.	1.6	136
135	An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. Nature Chemical Biology, 2019, 15, 433-436.	3.9	37
136	Complex heritability in cardiomyopathy. Nature Biomedical Engineering, 2019, 3, 87-89.	11.6	1
137	Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovascular Research, 2019, 115, 949-959.	1.8	38
138	Electronic Cigarettes. Journal of the American College of Cardiology, 2019, 74, 3121-3123.	1.2	5
139	Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome. Cell Reports, 2019, 29, 3751-3765.e5.	2.9	64
140	Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 395-419.	9.6	24
141	A Premature Termination Codon Mutation in MYBPC3 Causes Hypertrophic Cardiomyopathy via Chronic Activation of Nonsense-Mediated Decay. Circulation, 2019, 139, 799-811.	1.6	91
142	Cancer therapy-induced cardiomyopathy: can human induced pluripotent stem cell modelling help prevent it?. European Heart Journal, 2019, 40, 1764-1770.	1.0	21
143	A Combination of Itraconazole and Amiodarone Is Highly Effective against Trypanosoma cruzi Infection of Human Stem Cell–Derived Cardiomyocytes. American Journal of Tropical Medicine and Hygiene, 2019, 101, 383-391.	0.6	16
144	Vismione B Interferes with Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1359-1368.	0.6	6

#	Article	IF	CITATIONS
145	SETD7 Drives Cardiac Lineage Commitment through Stage-Specific Transcriptional Activation. Cell Stem Cell, 2018, 22, 428-444.e5.	5.2	38
146	Radiolabeled Duramycin. JACC: Cardiovascular Imaging, 2018, 11, 1834-1836.	2.3	5
147	Comparison of Non-human Primate versus Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Treatment of Myocardial Infarction. Stem Cell Reports, 2018, 10, 422-435.	2.3	49
148	Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nature Biomedical Engineering, 2018, 2, 104-113.	11.6	71
149	Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses InÂVivo. Cell Stem Cell, 2018, 22, 501-513.e7.	5.2	125
150	Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nature Communications, 2018, 9, 368.	5.8	71
151	Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2018, 11, e000043.	1.6	159
152	Mining Exosomal MicroRNAs from Human-Induced Pluripotent Stem Cells-Derived Cardiomyocytes for Cardiac Regeneration. Methods in Molecular Biology, 2018, 1733, 127-136.	0.4	11
153	Cardiac Cell Cycle Activation as a Strategy to Improve iPSC-Derived Cardiomyocyte Therapy. Circulation Research, 2018, 122, 14-16.	2.0	9
154	Cross-Site Reliability of Human Induced Pluripotent stem cell-derived Cardiomyocyte Based Safety Assays Using Microelectrode Arrays: Results from a Blinded CiPA Pilot Study. Toxicological Sciences, 2018, 164, 550-562.	1.4	90
155	Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. American Journal of Human Genetics, 2018, 102, 985-994.	2.6	59
156	Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Scientific Reports, 2018, 8, 6618.	1.6	32
157	Applications of genetically engineered human pluripotent stem cell reporters in cardiac stem cell biology. Current Opinion in Biotechnology, 2018, 52, 66-73.	3.3	6
158	Pluripotent Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy Applications: Progress and Hurdles for Clinical Translation. Molecular Therapy, 2018, 26, 1624-1634.	3.7	63
159	Induced pluripotent stem cells as a biopharmaceutical factory for extracellular vesicles. European Heart Journal, 2018, 39, 1848-1850.	1.0	11
160	Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development (Cambridge), 2018, 145, .	1.2	182
161	Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells, 2018, 36, 265-277.	1.4	111
162	Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annual Review of Pharmacology and Toxicology, 2018, 58, 83-103.	4.2	89

#	Article	IF	CITATIONS
163	Use of human induced pluripotent stem cell–derived cardiomyocytes to assess drug cardiotoxicity. Nature Protocols, 2018, 13, 3018-3041.	5.5	102
164	Big bottlenecks in cardiovascular tissue engineering. Communications Biology, 2018, 1, 199.	2.0	66
165	Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nature Communications, 2018, 9, 4906.	5.8	147
166	From the BCVS Chair. Circulation Research, 2018, 123, 942-943.	2.0	0
167	240Mesenchymal stem cells transfected with minicircle-HIF-1a decreases LV adverse remodelling via release of cardioprotective miRNAs and pro-angiogenic factors. Cardiovascular Research, 2018, 114, S62-S62.	1.8	0
168	Universal intracellular biomolecule delivery with precise dosage control. Science Advances, 2018, 4, eaat8131.	4.7	95
169	Cytokines profile of reverse cardiac remodeling following transcatheter aortic valve replacement. International Journal of Cardiology, 2018, 270, 83-88.	0.8	12
170	Strategies for Improving the Maturity of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Research, 2018, 123, 512-514.	2.0	88
171	Telomere shortening is a hallmark of genetic cardiomyopathies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9276-9281.	3.3	51
172	Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid. Scientific Reports, 2018, 8, 12960.	1.6	19
173	Genome Editing of Induced PluripotentÂStem Cells to Decipher CardiacÂChannelopathy Variant. Journal of the American College of Cardiology, 2018, 72, 62-75.	1.2	94
174	Disease modelling and drug discovery for hypertrophic cardiomyopathy using pluripotent stem cells: how far have we come?. European Heart Journal, 2018, 39, 3893-3895.	1.0	13
175	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as Models for Cardiac Channelopathies. Circulation Research, 2018, 123, 224-243.	2.0	74
176	Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circulation Research, 2018, 123, 443-450.	2.0	110
177	Electrophysiologic Characterization of Calcium Handling in Human Induced Pluripotent Stem Cell-Derived Atrial Cardiomyocytes. Stem Cell Reports, 2018, 10, 1867-1878.	2.3	48
178	Systemic Upregulation of IL-10 (Interleukin-10) Using a Nonimmunogenic Vector Reduces Growth and Rate of Dissecting Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1796-1805.	1.1	33
179	Effects of Repetitive Transendocardial CD34 ⁺ Cell Transplantation in Patients With Nonischemic Dilated Cardiomyopathy. Circulation Research, 2018, 123, 389-396.	2.0	25
180	Harnessing cell pluripotency for cardiovascular regenerative medicine. Nature Biomedical Engineering, 2018, 2, 392-398.	11.6	16

#	Article	IF	CITATIONS
181	Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells. Circulation, 2018, 138, 2666-2681.	1.6	112
182	Abstract 17203: Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Salvage the Injured Myocardium by Modulation of Autophagy. Circulation, 2018, 138, .	1.6	0
183	Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell, 2017, 20, 329-344.e7.	5.2	101
184	Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proceedings of the United States of America, 2017, 114, E1866-E1874.	3.3	124
185	High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine, 2017, 9, .	5.8	297
186	A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell–Based Models for Cardiovascular Diseases. Circulation Research, 2017, 120, 1561-1571.	2.0	56
187	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
188	Stem cell culture: Simply derived epicardial cells. Nature Biomedical Engineering, 2017, 1, .	11.6	2
189	Genome Editing in Cardiovascular Biology. Circulation Research, 2017, 120, 778-780.	2.0	40
190	3-Dimensionally Printed, Native-Like Scaffolds for Myocardial Tissue Engineering. Circulation Research, 2017, 120, 1224-1226.	2.0	10
191	Specific Imaging of Bacterial Infection Using 6″- ¹⁸ F-Fluoromaltotriose: A Second-Generation PET Tracer Targeting the Maltodextrin Transporter in Bacteria. Journal of Nuclear Medicine, 2017, 58, 1679-1684.	2.8	79
192	Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro. Methods in Molecular Biology, 2017, 1521, 55-68.	0.4	4
193	Patient-Specific Induced Pluripotent Stem Cell–Based Disease Model for Pathogenesis Studies and Clinical Pharmacotherapy. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	10
194	Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7089-7094.	3.3	30
195	Brief Report: External Beam Radiation Therapy for the Treatment of Human Pluripotent Stem Cell-Derived Teratomas. Stem Cells, 2017, 35, 1994-2000.	1.4	12
196	Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials, 2017, 131, 111-120.	5.7	72
197	Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Scientific Reports, 2017, 7, 44840.	1.6	16
198	Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials, 2017, 131, 47-57.	5.7	99

#	Article	IF	CITATIONS
199	Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsystems and Nanoengineering, 2017, 3, 16080.	3.4	49
200	Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers. Cell Stem Cell, 2017, 20, 490-504.e5.	5.2	163
201	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	21.5	1,076
202	Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods. Nature Biomedical Engineering, 2017, 1, 826-837.	11.6	38
203	Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells. Circulation Research, 2017, 121, 1237-1250.	2.0	18
204	Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics. Cell Reports, 2017, 20, 1978-1990.	2.9	31
205	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	15.6	104
206	Navigating the Future of Cardiovascular Drug Development—Leveraging Novel Approaches to Drive Innovation and Drug Discovery: Summary of Findings from the Novel Cardiovascular Therapeutics Conference. Cardiovascular Drugs and Therapy, 2017, 31, 445-458.	1.3	8
207	Comparison of Non-Coding RNAs in Exosomes and Functional Efficacy of Human Embryonic Stem Cell- versus Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells, 2017, 35, 2138-2149.	1.4	54
208	Combining hiPSCs and Human Genetics: Major Applications in Drug Development. Cell Stem Cell, 2017, 21, 161-165.	5.2	12
209	GDF-15 (Growth Differentiation Factor 15) Is Associated With Lack of Ventricular Recovery and Mortality After Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2017, 10, .	1.4	27
210	Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11111-E11120.	3.3	68
211	Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs. Circulation Research, 2017, 121, 376-391.	2.0	118
212	Challenging the complementarity of different metrics of left atrial function: insight from a cardiomyopathy-based study. European Heart Journal Cardiovascular Imaging, 2017, 18, 1153-1162.	0.5	16
213	Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. ELife, 2017, 6, .	2.8	161
214	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
215	Allogeneic Mesenchymal Stromal Cells Overexpressing Mutant Human Hypoxiaâ€Inducible Factor 1â€Î± (HIF1â€Î in an Ovine Model of Acute Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	^{±)} 1.6	29
216	Defective Signaling in the JAK-STAT Pathway Tracks with Chronic Inflammation and Cardiovascular Risk in Aging Humans. Cell Systems, 2016, 3, 374-384.e4.	2.9	107

#	Article	IF	CITATIONS
217	Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 2016, 22, 547-556.	15.2	573
218	Fibrosis of the Neonatal Mouse Heart After Cryoinjury Is Accompanied by Wnt Signaling Activation and Epicardialâ€ŧoâ€Mesenchymal Transition. Journal of the American Heart Association, 2016, 5, e002457.	1.6	36
219	Translation of Human-Induced PluripotentÂStem Cells. Journal of the American College of Cardiology, 2016, 67, 2161-2176.	1.2	209
220	A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell, 2016, 165, 1147-1159.	13.5	193
221	Emerging Research Directions in AdultÂCongenital Heart Disease. Journal of the American College of Cardiology, 2016, 67, 1956-1964.	1.2	91
222	21st Century Cardio-Oncology. JACC Basic To Translational Science, 2016, 1, 386-398.	1.9	29
223	Increased Pyruvate Dehydrogenase Kinase 4 Expression in Lung Pericytes Is Associated with Reduced Endothelial-Pericyte Interactions and Small Vessel Loss in Pulmonary Arterial Hypertension. American Journal of Pathology, 2016, 186, 2500-2514.	1.9	35
224	Efficacy of CD34+ Stem Cell Therapy in Nonischemic Dilated Cardiomyopathy Is Absent in Patients With Diabetes but Preserved in Patients With Insulin Resistance. Stem Cells Translational Medicine, 2016, 5, 632-638.	1.6	33
225	Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiology, 2016, 1, 953.	3.0	97
226	Alternative approaches to generating cardiomyocytes are under development. Nature Reviews Cardiology, 2016, 13, 574-574.	6.1	1
227	Adult Stem Cell Therapy and Heart Failure, 2000 to 2016. JAMA Cardiology, 2016, 1, 831.	3.0	248
228	Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses InÂVitro. Cell Stem Cell, 2016, 19, 311-325.	5.2	131
229	iPSC-derived cardiomyocytes reveal abnormal TGF-Î ² signalling in left ventricular non-compaction cardiomyopathy. Nature Cell Biology, 2016, 18, 1031-1042.	4.6	148
230	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	5.8	138
231	Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy. Proceedings of the United States of America, 2016, 113, 13120-13125.	3.3	60
232	Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell–Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. Journal of the American College of Cardiology, 2016, 68, 2086-2096.	1.2	185
233	Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiological Reviews, 2016, 96, 1093-1126.	13.1	93
234	Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas. Stem Cell Reports, 2016, 6, 176-187.	2.3	27

#	Article	IF	CITATIONS
235	Finding Expandable Induced Cardiovascular Progenitor Cells. Circulation Research, 2016, 119, 16-20.	2.0	9
236	Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nature Reviews Cardiology, 2016, 13, 333-349.	6.1	152
237	Systematic Characterization of Long Noncoding RNAs Reveals the Contrasting Coordination of <i>Cis</i> - and <i>Trans</i> - Molecular Regulation in Human Fetal and Adult Hearts. Circulation: Cardiovascular Genetics, 2016, 9, 110-118.	5.1	42
238	A 3D boost. Nature Materials, 2016, 15, 259-261.	13.3	5
239	Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Translational Medicine, 2016, 5, 186-191.	1.6	109
240	Timeâ€dependent evolution of functional <i>vs.</i> remodeling signaling in induced pluripotent stem cellâ€derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB Journal, 2016, 30, 1464-1479.	0.2	58
241	Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Advanced Drug Delivery Reviews, 2016, 96, 234-244.	6.6	136
242	Short Hairpin RNA Silencing of PHD-2 Improves Neovascularization and Functional Outcomes in Diabetic Wounds and Ischemic Limbs. PLoS ONE, 2016, 11, e0150927.	1.1	16
243	Extracellular Matrix can Recover the Downregulation of Adhesion Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment. Scientific Reports, 2015, 5, 10902.	1.6	43
244	Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand?. EMBO Molecular Medicine, 2015, 7, 1090-1103.	3.3	38
245	Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2015, 87, 21.3.1-21.3.15.	3.5	112
246	Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nature Communications, 2015, 6, 6955.	5.8	155
247	Right Heart Score for Predicting Outcome in Idiopathic, Familial, or Drug- and Toxin-Associated Pulmonary Arterial Hypertension. JACC: Cardiovascular Imaging, 2015, 8, 627-638.	2.3	44
248	Finding the Rhythm of Sudden Cardiac Death. Circulation Research, 2015, 116, 1989-2004.	2.0	68
249	Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annual Review of Genetics, 2015, 49, 461-484.	3.2	63
250	Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes to understand and test cardiac calcium handling: A glass half full. Journal of Molecular and Cellular Cardiology, 2015, 89, 379-380.	0.9	10
251	Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. Journal of Molecular and Cellular Cardiology, 2015, 85, 79-88.	0.9	134
252	Intracoronary Transplantation of CD34+ Cells Is Associated With Improved Myocardial Perfusion in Patients With Nonischemic Dilated Cardiomyopathy. Journal of Cardiac Failure, 2015, 21, 145-152.	0.7	51

#	Article	IF	CITATIONS
253	Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Current Protocols in Stem Cell Biology, 2015, 32, 4A.8.1-4A.8.17.	3.0	75
254	Enabling Consistency in Pluripotent Stem Cell-Derived Products for Research and Development and Clinical Applications Through Material Standards. Stem Cells Translational Medicine, 2015, 4, 217-223.	1.6	30
255	Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2015, 1353, 119-130.	0.4	35
256	Novel codon-optimized mini-intronic plasmid for efficient, inexpensive and xeno-free induction of pluripotency. Scientific Reports, 2015, 5, 8081.	1.6	51
257	Variable Activation of the DNA Damage Response Pathways in Patients Undergoing Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging. Circulation: Cardiovascular Imaging, 2015, 8, e002851.	1.3	17
258	Assessment of the Radiation Effects ofÂCardiac CT Angiography Using ProteinÂandÂGenetic Biomarkers. JACC: Cardiovascular Imaging, 2015, 8, 873-884.	2.3	66
259	Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell, 2015, 17, 89-100.	5.2	170
260	Exosomes as Potential Alternatives to Stem Cell Therapy in Mediating Cardiac Regeneration. Circulation Research, 2015, 117, 7-9.	2.0	61
261	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2015, 117, 80-88.	2.0	372
262	Induced Pluripotent Stem Cells. JAMA - Journal of the American Medical Association, 2015, 313, 1613.	3.8	46
263	MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Advanced Drug Delivery Reviews, 2015, 88, 3-15.	6.6	53
264	Immunologic Network and Response to Intramyocardial CD34+ Stem Cell Therapy in Patients With Dilated Cardiomyopathy. Journal of Cardiac Failure, 2015, 21, 572-582.	0.7	11
265	Large Animal Models of Ischemic Cardiomyopathy: Are They Enough to Bridge the Translational Gap?. Journal of Nuclear Cardiology, 2015, 22, 666-672.	1.4	5
266	Response to Letter Regarding Article, "Cross Talk of Combined Gene and Cell Therapy in Ischemic Heart Disease: Role of Exosomal MicroRNA Transfer― Circulation, 2015, 131, e385.	1.6	2
267	A Rapid, High-Quality, Cost-Effective, Comprehensive and Expandable Targeted Next-Generation Sequencing Assay for Inherited Heart Diseases. Circulation Research, 2015, 117, 603-611.	2.0	34
268	Lift NIH restrictions on chimera research. Science, 2015, 350, 640-640.	6.0	17
269	Cytokines profile in hypertensive patients with left ventricular remodeling and dysfunction. Journal of the American Society of Hypertension, 2015, 9, 975-984.e3.	2.3	16
270	Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Circulation Research, 2015, 117, 720-730.	2.0	197

#	Article	IF	CITATIONS
271	Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation, 2015, 132, 762-771.	1.6	77
272	Manganeseâ€Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Periâ€Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia–Reperfusion Model. Journal of the American Heart Association, 2015, 4, .	1.6	21
273	Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism. European Heart Journal, 2015, 36, 806-816.	1.0	40
274	[Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. Biomaterials, 2015, 37, 289-298.	5.7	44
275	Hurdles to clinical translation of human induced pluripotent stem cells. Journal of Clinical Investigation, 2015, 125, 2551-2557.	3.9	132
276	Generation of iPSCs as a Pooled Culture Using Magnetic Activated Cell Sorting of Newly Reprogrammed Cells. PLoS ONE, 2015, 10, e0134995.	1.1	30
277	Abstract 15: Global RNA Splicing Regulation in Cardiac Maturation. Circulation Research, 2015, 117, .	2.0	0
278	Abstract 248: Aberrant TGFÎ 2 Signaling as an Etiology of Left Ventricular Non-compaction Cardiomyopathy. Circulation Research, 2015, 117, .	2.0	0
279	Abstract 18056: Modeling Duchenne Muscular Dystrophy (DMD) Cardiomyopathy Using Patient-specific Induced Pluripotent Stem Cell-derived Cardiomyocytes. Circulation, 2015, 132, .	1.6	Ο
280	Rapid and Efficient Conversion of Integration-Free Human Induced Pluripotent Stem Cells to GMP-Grade Culture Conditions. PLoS ONE, 2014, 9, e94231.	1.1	43
281	Characterization of the molecular mechanisms underlying increased ischemic damage in the <i>aldehyde dehydrogenase 2</i> genetic polymorphism using a human induced pluripotent stem cell model system. Science Translational Medicine, 2014, 6, 255ra130.	5.8	84
282	On-Line Visualization of Ischemic Burden During Repetitive Ischemia/Reperfusion. JACC: Cardiovascular Imaging, 2014, 7, 956-958.	2.3	3
283	The Presence of Electromechanical Mismatch In Nonischemic Dilated Cardiomyopathy Is Associated With Ventricular Repolarization Instability. Journal of Cardiac Failure, 2014, 20, 891-898.	0.7	2
284	Effects of Transendocardial CD34 ⁺ Cell Transplantation in Patients With Ischemic Cardiomyopathy. Circulation: Cardiovascular Interventions, 2014, 7, 552-559.	1.4	51
285	Human Stem Cells for Modeling Heart Disease and for Drug Discovery. Science Translational Medicine, 2014, 6, 239ps6.	5.8	175
286	High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry. Journal of Visualized Experiments, 2014, , 52010.	0.2	56
287	Stem Cells and Cardiovascular Drug Development—Reply. JAMA - Journal of the American Medical Association, 2014, 311, 1070.	3.8	0
288	Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy. Science Translational Medicine, 2014, 6, 240ra74.	5.8	222

#	Article	IF	CITATIONS
289	Relationship between Echocardiographic and Magnetic Resonance Derived Measures of Right Ventricular Size and Function in Patients with Pulmonary Hypertension. Journal of the American Society of Echocardiography, 2014, 27, 405-412.	1.2	46
290	Stem Cell Imaging: From Bench to Bedside. Cell Stem Cell, 2014, 14, 431-444.	5.2	218
291	Tracking gene and cell fate for therapeutic gain. Nature Materials, 2014, 13, 106-109.	13.3	24
292	Cardiac Stem Cell Biology. Circulation Research, 2014, 114, 21-27.	2.0	54
293	Effect of Human Donor Cell Source on Differentiation and Function of Cardiac Induced Pluripotent Stem Cells. Journal of the American College of Cardiology, 2014, 64, 436-448.	1.2	119
294	Genome Editing of Isogenic Human Induced Pluripotent Stem Cells Recapitulates Long QT Phenotype for Drug Testing. Journal of the American College of Cardiology, 2014, 64, 451-459.	1.2	149
295	Cardiac Tissue Slice Transplantation as a Model to Assess Tissue-Engineered Graft Thickness, Survival, and Function. Circulation, 2014, 130, S77-86.	1.6	28
296	Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nature Communications, 2014, 5, 3903.	5.8	148
297	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform. Circulation Research, 2014, 115, 556-566.	2.0	134
298	Cross Talk of Combined Gene and Cell Therapy in Ischemic Heart Disease. Circulation, 2014, 130, S60-9.	1.6	190
299	Chemically defined generation of human cardiomyocytes. Nature Methods, 2014, 11, 855-860.	9.0	1,320
300	A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets. Stem Cell Reports, 2014, 3, 185-203.	2.3	73
301	Multi-cellular interactions sustain long-term contractility of human pluripotent stem cell-derived cardiomyocytes. American Journal of Translational Research (discontinued), 2014, 6, 724-35.	0.0	32
302	Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine, 2013, 19, 998-1004.	15.2	559
303	Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells. Cell Stem Cell, 2013, 12, 101-113.	5.2	584
304	Global Epigenomic Reconfiguration During Mammalian Brain Development. Science, 2013, 341, 1237905.	6.0	1,609
305	A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening, and Publication Standards. Journal of Cardiovascular Translational Research, 2013, 6, 22-30.	1.1	114
306	Screening Drug-Induced Arrhythmia Using Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays. Circulation, 2013, 128, S3-13.	1.6	269

#	Article	IF	CITATIONS
307	Drug Screening Using a Library of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity. Circulation, 2013, 127, 1677-1691.	1.6	472
308	Cardiovascular Molecular Imaging as a Tool to Study Biology. Theranostics, 2013, 3, 914-915.	4.6	1
309	Generation of Human iPSCs from Human Peripheral Blood Mononuclear Cells Using Non-integrative Sendai Virus in Chemically Defined Conditions. Methods in Molecular Biology, 2013, 1036, 81-88.	0.4	72
310	Genome Editing of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells With Zinc Finger Nucleases for Cellular Imaging. Circulation Research, 2012, 111, 1494-1503.	2.0	99
311	Induced Pluripotent Stem Cells as a Disease Modeling and Drug Screening Platform. Journal of Cardiovascular Pharmacology, 2012, 60, 408-416.	0.8	190
312	Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell, 2012, 10, 16-28.	5.2	616
313	Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy. Science Translational Medicine, 2012, 4, 130ra47.	5.8	590
314	Clinically relevant issues in cardiac stem cell therapy. FASEB Journal, 2012, 26, 459.1.	0.2	0
315	An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nature Biotechnology, 2011, 29, 829-834.	9.4	357
316	Comparison of Human Induced Pluripotent and Embryonic Stem Cells: Fraternal or Identical Twins?. Molecular Therapy, 2011, 19, 635-638.	3.7	113
317	Current Perspectives on Imaging Cardiac Stem Cell Therapy. Journal of Nuclear Medicine, 2010, 51, 128S-136S.	2.8	33
318	Effects of Ionizing Radiation on Self-Renewal and Pluripotency of Human Embryonic Stem Cells. Cancer Research, 2010, 70, 5539-5548.	0.4	69
319	Comparison of adult versus embryonic stem cell therapy for cardiovascular disease: Insights from molecular imaging studies. Current Cardiovascular Imaging Reports, 2009, 2, 50-58.	0.4	2
320	Long term non-invasive imaging of embryonic stem cells using reporter genes. Nature Protocols, 2009, 4, 1192-1201.	5.5	90
321	Cardiovascular Molecular Imaging. Radiology, 2007, 244, 337-355.	3.6	66
322	Molecular Imaging of Embryonic Stem Cell Misbehavior and Suicide Gene Ablation. Cloning and Stem Cells, 2007, 9, 107-117.	2.6	123
323	An Unusual Cause of Stroke from a Left Atrial Mass. Journal of the American Society of Echocardiography, 2007, 20, 537.e1-537.e2.	1.2	1
324	Proteomic analysis of reporter genes for molecular imaging of transplanted embryonic stem cells. Proteomics, 2006, 6, 6234-6249.	1.3	48

#	Article	IF	CITATIONS
325	Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiological Genomics, 2006, 25, 29-38.	1.0	76
326	Human gene therapy and imaging: cardiology. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, S346-S357.	3.3	16
327	Molecular imaging of cardiovascular gene products. Journal of Nuclear Cardiology, 2004, 11, 491-505.	1.4	59
328	Noninvasive Optical Imaging of Firefly Luciferase Reporter Gene Expression in Skeletal Muscles of Living Mice. Molecular Therapy, 2001, 4, 297-306.	3.7	268
329	Decreasing Striatal 6-FDOPA Uptake with Increasing Duration of Cocaine Withdrawal. Neuropsychopharmacology, 1997, 17, 402-409.	2.8	83
330	The Relationship of Adhesion Molecules and Leukocyte Infiltration in Chronic Tubulointerstitial Nephritis Induced by Puromycin Aminonucleoside in Wistar Rats. Clinical Immunology and Immunopathology, 1996, 79, 229-235.	2.1	19
331	Effect of sleep deprivation on brain metabolism of depressed patients. American Journal of Psychiatry, 1992, 149, 538-543.	4.0	281
332	Positron emission tomography study of phencyclidine users as a possible drug model of schizophrenia. Yakubutsu, Seishin, KÅdÅ= Japanese Journal of Psychopharmacology, 1991, 11, 47-8.	0.0	3
333	Wnt Signaling Interactor WTIP (Wilms Tumor Interacting Protein) Underlies Novel Mechanism for Cardiac Hypertrophy. Circulation Genomic and Precision Medicine, 0, , .	1.6	Ο