
Yonghao Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. Journal of Materials Science and Technology, 2022, 97, 190-200.	10.7	71
2	Modification of PEDOT:PSS towards high-efficiency OLED electrode via synergistic effect of carboxy and phenol groups from biomass derivatives. Chemical Engineering Journal, 2022, 430, 133014.	12.7	21
3	Research progress of smart response composite hydrogels based on nanocellulose. Carbohydrate Polymers, 2022, 275, 118741.	10.2	23
4	Highly transparent RCF/PTFE humidity and IR light dual-driven actuator with high force density, sensitivity and stability. Applied Surface Science, 2022, 572, 151502.	6.1	6
5	Development of stable agar/carrageenan-Fe3O4-Klebsiella pneumoniae composite beads for efficient phenol degradation. Environmental Research, 2022, 205, 112454.	7.5	8
6	Tannic acid modified hemicellulose nanoparticle reinforced ionic hydrogels with multi-functions for human motion strain sensor applications. Industrial Crops and Products, 2022, 176, 114412.	5.2	20
7	Lignin reinforced hydrogels with fast self-recovery, multi-functionalities via calcium ion bridging for flexible smart sensing applications. International Journal of Biological Macromolecules, 2022, 200, 226-233.	7.5	13
8	Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. International Journal of Biological Macromolecules, 2022, 201, 104-110.	7.5	21
9	Design of Fe ³⁺ -Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules, 2022, 23, 766-778.	5.4	32
10	Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. Journal of Cleaner Production, 2022, 333, 130171.	9.3	57
11	Near-Infrared Shielding Performance of Tungsten-Doped Tin Dioxide Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 1578-1587.	3.7	2
12	Novel functionalization of ZIF-67 for an efficient broad-spectrum photocatalyst: formaldehyde degradation at room temperature. New Journal of Chemistry, 2022, 46, 2962-2970.	2.8	14
13	Adhesive, Antibacterial, Conductive, Anti-UV, Self-Healing, and Tough Collagen-Based Hydrogels from a Pyrogallol-Ag Self-Catalysis System. ACS Applied Materials & Interfaces, 2022, 14, 8728-8742.	8.0	28
14	Mussel-Inspired Magnetic Dissolving Pulp Fibers Toward the Adsorption and Degradation of Organic Dyes. Frontiers in Chemistry, 2022, 10, 840133.	3.6	2
15	An environmentally friendly and highly transparent ZnO/cellulose nanocomposite membrane for UV sensing and shielding. Cellulose, 2022, 29, 4439-4453.	4.9	10
16	Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application. International Journal of Biological Macromolecules, 2022, 205, 442-451.	7.5	43
17	TEMPO-mediated oxidized cellulose nanofibers-Cd2+ derived hierarchically porous carbon aerogel for oxygen reduction electrocatalysis. Journal of Electroanalytical Chemistry, 2022, 910, 116168.	3.8	5
18	High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties. International Journal of Biological Macromolecules, 2022, 207, 48-61.	7.5	22

#	Article	IF	CITATIONS
19	Role of nanocellulose in colored paper preparation. International Journal of Biological Macromolecules, 2022, 206, 355-362.	7.5	3
20	Towards sustainable oil/gas fracking by reusing its process water: A review on fundamentals, challenges, and opportunities. Journal of Petroleum Science and Engineering, 2022, 213, 110422.	4.2	10
21	Lignin-Reinforced Paper with Excellent Stability and Thermal Properties for an Efficient Heat Spreader. ACS Sustainable Chemistry and Engineering, 2022, 10, 5569-5581.	6.7	2
22	Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112509.	5.0	22
23	Energy harvesting by vitrimer-based moist-electric generators. Journal of Materials Chemistry A, 2022, 10, 11524-11534.	10.3	14
24	A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. Journal of Materials Chemistry A, 2022, 10, 12092-12103.	10.3	35
25	Preparation of Hemicellulose Nanoparticle-Containing Ionic Hydrogels with High Strength, Self-Healing, and UV Resistance and Their Applications as Strain Sensors and Asymmetric Pressure Sensors. Biomacromolecules, 2022, 23, 2272-2279.	5.4	13
26	High-Sensitivity Multiresponses Cellulose-Based Actuators with Configurable Amplitude. ACS Sustainable Chemistry and Engineering, 2022, 10, 6414-6425.	6.7	15
27	Achieving Higher Signal Response Than Splitless GC Injection by High-Pressure Headspace Sampling and Full Evaporation Technique. Chromatographia, 2022, 85, 507.	1.3	1
28	A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.	9.4	9
29	Nanofibrillated Cellulose-Derived Nanofibrous Co@N-C as Oxygen Reduction Reaction Catalysts in Zn–Air Batteries. ACS Applied Nano Materials, 2022, 5, 6438-6446.	5.0	9
30	Molded fiber and pulp products as green and sustainable alternatives to plastics: A mini review. Journal of Bioresources and Bioproducts, 2022, 7, 14-25.	20.5	45
31	Fruit Peel-Inspired Super-Stable Ionic Organohydrogel Electronics with Dense Hydrophobic Skin. ACS Applied Polymer Materials, 2022, 4, 4673-4680.	4.4	2
32	Cellulose Hollow Annular Nanoparticles Prepared from High-Intensity Ultrasonic Treatment. ACS Nano, 2022, 16, 8928-8938.	14.6	13
33	Lignin-containing hydrogels with anti-freezing, excellent water retention and super-flexibility for sensor and supercapacitor applications. International Journal of Biological Macromolecules, 2022, 214, 77-90.	7.5	18
34	Redispersion of dried plant nanocellulose: A review. Carbohydrate Polymers, 2022, 294, 119830.	10.2	18
35	Highly ordered asymmetric cellulose-based honeycomb membrane for moisture-electricity generation and humidity sensing. Carbohydrate Polymers, 2022, 294, 119809.	10.2	5
36	Ultra-low pressure cellulose-based nanofiltration membrane fabricated on layer-by-layer assembly for efficient sodium chloride removal. Carbohydrate Polymers, 2021, 255, 117352.	10.2	33

#	Article	IF	CITATIONS
37	A Synthetic Method for Siteâ€Specific Functionalized Polypeptides: Metalâ€Free, Highly Active, and Selective at Room Temperature. Angewandte Chemie, 2021, 133, 902-908.	2.0	3
38	Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydrate Polymers, 2021, 251, 117107.	10.2	58
39	Super-ductile, injectable, fast self-healing collagen-based hydrogels with multi-responsive and accelerated wound-repair properties. Chemical Engineering Journal, 2021, 405, 126756.	12.7	49
40	Integrating phosphotungstic acid-assisted prerefining with cellulase treatment for enhancing the reactivity of kraft-based dissolving pulp. Bioresource Technology, 2021, 320, 124283.	9.6	29
41	Fruit-battery-inspired self-powered stretchable hydrogel-based ionic skin that works effectively in extreme environments. Journal of Materials Chemistry A, 2021, 9, 3968-3975.	10.3	42
42	A bioinspired gallol-functionalized collagen as wet-tissue adhesive for biomedical applications. Chemical Engineering Journal, 2021, 417, 127962.	12.7	37
43	Alternative initiatives for nonâ€wood chemical pulping and integration with the biorefinery concept: A review. Biofuels, Bioproducts and Biorefining, 2021, 15, 100-118.	3.7	24
44	A Synthetic Method for Siteâ€Specific Functionalized Polypeptides: Metalâ€Free, Highly Active, and Selective at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 889-895.	13.8	15
45	Converting bleached hardwood kraft pulp to dissolving pulp by using organic electrolyte solutions. Cellulose, 2021, 28, 1311-1320.	4.9	6
46	Fabrication of high value cellulose nanofibers@Ni foam by non carbonization: various application developed during the preparation. Cellulose, 2021, 28, 1455-1468.	4.9	29
47	Breaking the lignin conversion bottleneck for multiple products: Co-production of aryl monomers and carbon nanospheres using one-step catalyst-free depolymerization. Fuel, 2021, 285, 119211.	6.4	25
48	Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose, 2021, 28, 3733-3743.	4.9	44
49	Novel melamine-based porous organic materials as metal-free catalysts for copolymerization of SO2 with epoxide. Polymer, 2021, 217, 123434.	3.8	12
50	Nano-SiO2 used with cationic polymer to improve the strength of sack paper. BioResources, 2021, 16, 3348-3359.	1.0	0
51	Pre-cryocrushing of natural carbon precursors to prepare nitrogen, sulfur co-doped porous microcellular carbon as an efficient ORR catalyst. Carbon, 2021, 173, 800-808.	10.3	44
52	Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(VI) reduction. Carbohydrate Polymers, 2021, 258, 117676.	10.2	69
53	A chitosan/dopamine-TiO2 composite nanofiltration membrane for antifouling in water purification. Cellulose, 2021, 28, 4959-4973.	4.9	15
54	Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device. Carbohydrate Polymers, 2021, 260, 117820.	10.2	16

#	Article	IF	CITATIONS
55	A green all-polysaccharide hydrogel platform for sensing and electricity harvesting/storage. Journal of Power Sources, 2021, 493, 229711.	7.8	18
56	Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors. Chemical Engineering Journal, 2021, 414, 128903.	12.7	80
57	Biocompatible Catecholâ€Functionalized Celluloseâ€Based Adhesives with Strong Water Resistance. Macromolecular Materials and Engineering, 2021, 306, 2100232.	3.6	19
58	Wearable lignin-based hydrogel electronics: A mini-review. International Journal of Biological Macromolecules, 2021, 181, 45-50.	7.5	58
59	High-Yield and High-Efficiency Conversion of HMF to Levulinic Acid in a Green and Facile Catalytic Process by a Dual-Function BrAֻnsted-Lewis Acid HScCl ₄ Catalyst. ACS Omega, 2021, 6, 15940-15947.	3.5	8
60	New Kind of Lignin/Polyhydroxyurethane Composite: Green Synthesis, Smart Properties, Promising Applications, and Good Reprocessability and Recyclability. ACS Applied Materials & Interfaces, 2021, 13, 28938-28948.	8.0	64
61	An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers. Journal of Power Sources, 2021, 498, 229886.	7.8	65
62	Improving the sensitivity of cellulose fiber-based lateral flow assay by incorporating a water-dissolvable polyvinyl alcohol dam. Cellulose, 2021, 28, 8641-8651.	4.9	20
63	Lignin sulfonate induced ultrafast polymerization of double network hydrogels with anti-freezing, high strength and conductivity and their sensing applications at extremely cold conditions. Composites Part B: Engineering, 2021, 217, 108879.	12.0	52
64	Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability. Carbohydrate Polymers, 2021, 264, 117995.	10.2	43
65	An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors. International Journal of Biological Macromolecules, 2021, 184, 282-288.	7.5	31
66	Tendon-inspired fibers from liquid crystalline collagen as the pre-oriented bioink. International Journal of Biological Macromolecules, 2021, 185, 739-749.	7.5	10
67	Non-Wood Fibers: Relationships of Fiber Properties with Pulp Properties. ACS Omega, 2021, 6, 21613-21622.	3.5	38
68	Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chemical Engineering Journal, 2021, 417, 129329.	12.7	157
69	Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chemical Engineering Journal, 2021, 418, 129518.	12.7	72
70	Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications. International Journal of Biological Macromolecules, 2021, 187, 189-199.	7.5	27
71	A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydrate Polymers, 2021, 268, 118210.	10.2	40
72	Construction of flexible cellulose nanofiber fiber@graphene quantum dots hybrid film applied in supercapacitor and sensor. Cellulose, 2021, 28, 10359-10372.	4.9	21

#	Article	IF	CITATIONS
73	Carbonized porous wood as an effective scaffold for loading flower-like CoS, NiS nanofibers with Co, Ni nanoparticles served as electrode material for high-performance supercapacitors. Industrial Crops and Products, 2021, 167, 113545.	5.2	21
74	Green and sustainable cellulose-derived humidity sensors: A review. Carbohydrate Polymers, 2021, 270, 118385.	10.2	66
75	Lignin nanofiller-reinforced composites hydrogels with long-lasting adhesiveness, toughness, excellent self-healing, conducting, ultraviolet-blocking and antibacterial properties. Composites Part B: Engineering, 2021, 225, 109316.	12.0	44
76	Coordination-driven hierarchically structured composites with N-CNTs-grafted graphene-confined ultra-small Co nanoparticles as effective oxygen electrocatalyst in rechargeable Zn-air battery. Ceramics International, 2021, 47, 30091-30098.	4.8	10
77	Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydrate Polymers, 2021, 271, 118425.	10.2	47
78	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	12.7	65
79	A thin and flexible solid electrolyte templated by controllable porous nanocomposites toward extremely high performance all-solid-state lithium-ion batteries. Chemical Engineering Journal, 2021, 425, 130632.	12.7	30
80	Cellulose-based flexible organic light-emitting diodes with enhanced stability and external quantum efficiency. Journal of Materials Chemistry C, 2021, 9, 4496-4504.	5.5	15
81	3D hollow-structured hydrogels with editable macrostructure, function, and mechanical properties induced by segmented adjustments. RSC Advances, 2021, 11, 26876-26882.	3.6	3
82	Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review. Journal of Materials Chemistry A, 2021, 9, 14233-14264.	10.3	55
83	Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications. International Journal of Biological Macromolecules, 2021, 193, 941-947.	7.5	19
84	Immobilization and Characterization of Pectinase onto the Cationic Polystyrene Resin. ACS Omega, 2021, 6, 31683-31688.	3.5	9
85	Co-N-Doped Directional Multichannel PAN/CA-Based Electrospun Carbon Nanofibers as High-Efficiency Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 17068-17077.	6.7	25
86	A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chemical Engineering Journal, 2020, 379, 122271.	12.7	171
87	Stabilization of Pickering emulsions with cellulose nanofibers derived from oil palm fruit bunch. Cellulose, 2020, 27, 839-851.	4.9	35
88	Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161, 62-70.	10.3	282
89	Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. Journal of Materials Chemistry A, 2020, 8, 3109-3118.	10.3	158
90	Nanocellulose-assisted synthesis of ultrafine Co nanoparticles-loaded bimodal micro-mesoporous N-rich carbon as bifunctional oxygen electrode for Zn-air batteries. Journal of Power Sources, 2020, 450, 227640.	7.8	42

#	Article	IF	CITATIONS
91	Microwave-Assisted Catalytic Cleavage of C–C Bond in Lignin Models by Bifunctional Pt/CDC-SiC. ACS Sustainable Chemistry and Engineering, 2020, 8, 38-43.	6.7	20
92	Effects of hemicellulose content on TEMPO-mediated selective oxidation, and the properties of films prepared from bleached chemical pulp. Cellulose, 2020, 27, 1043-1054.	4.9	9
93	Facile synthesis of Ag NPs@ MIL-100(Fe)/ guar gum hybrid hydrogel as a versatile photocatalyst for wastewater remediation: Photocatalytic degradation, water/oil separation and bacterial inactivation. Carbohydrate Polymers, 2020, 230, 115642.	10.2	82
94	Conductive Regenerated Cellulose Film and Its Electronic Devices – A Review. Carbohydrate Polymers, 2020, 250, 116969.	10.2	35
95	Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive. Carbohydrate Polymers, 2020, 250, 116941.	10.2	28
96	Insight on adsorption of cellulase on wet ground corncob residues and its evaluation by multivariate linear analysis. Bioresource Technology, 2020, 318, 124107.	9.6	6
97	A three dimensional interconnected Li7La3Zr2O12 framework composite solid electrolyte utilizing lignosulfonate/ cellulose nanofiber bio-template for high performance lithium ion batteries. Journal of Power Sources, 2020, 477, 228752.	7.8	26
98	Super-stable, solvent-resistant and uniform lignin nanorods and nanospheres with a high yield in a mild and facile process. Green Chemistry, 2020, 22, 8734-8744.	9.0	29
99	Asymmetrically Patterned Cellulose Nanofibers/Graphene Oxide Composite Film for Humidity Sensing and Moist-Induced Electricity Generation. ACS Applied Materials & Interfaces, 2020, 12, 55205-55214.	8.0	56
100	A cellulose-based nanofiltration membrane with a stable three-layer structure for the treatment of drinking water. Cellulose, 2020, 27, 8237-8253.	4.9	31
101	Lignin-Directed Control of Silver Nanoparticles with Tunable Size in Porous Lignocellulose Hydrogels and Their Application in Catalytic Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 12655-12663.	6.7	69
102	Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment. Bioresource Technology, 2020, 316, 123920.	9.6	31
103	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	10.3	53
104	Effect of Various Microwave Absorbents on the Microwave-Assisted Lignin Depolymerization Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 16086-16090.	6.7	15
105	Photochromic nanocellulose composite films with excellent anti-UV capacity. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4
106	Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp. Cellulose, 2020, 27, 9653-9661.	4.9	12
107	Fabrication of lignin nanospheres by emulsification in a binary Î ³ -valerolactone/glycerol system and their application as a bifunctional reducer and carrier for Pd nanoparticles with enhanced catalytic activity. Green Chemistry, 2020, 22, 8594-8603.	9.0	32
108	Palladium nano-catalyst supported on cationic nanocellulose–alginate hydrogel for effective catalytic reactions. Cellulose, 2020, 27, 6995-7008.	4.9	47

#	Article	IF	CITATIONS
109	All-Lignin-Based Hydrogel with Fast pH-Stimuli Responsiveness for Mechanical Switching and Actuation. Chemistry of Materials, 2020, 32, 4324-4330.	6.7	136
110	A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. Journal of Materials Chemistry A, 2020, 8, 10898-10908.	10.3	107
111	A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydrate Polymers, 2020, 244, 116472.	10.2	58
112	Water molecule "spinning cutter―controllably improving the performance of cellulosic fibers. Cellulose, 2020, 27, 7297-7306.	4.9	7
113	Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties. Chemical Engineering Journal, 2020, 396, 125341.	12.7	130
114	Quantification of N-methyl morpholine N-oxide in biorefinery process solution by headspace gas chromatography. Cellulose, 2020, 27, 6861-6870.	4.9	4
115	A self-healing, stretchable, and conductive Poly(N-vinylpyrrolidone)/gallic acid composite hydrogel formed via hydrogen bonding for wearable electronic sensors. Composites Science and Technology, 2020, 198, 108294.	7.8	69
116	Highly Selective Conversion of Furfural to Furfural Alcohol or Levulinate Ester in One Pot over ZrO ₂ @SBA-15 and Its Kinetic Behavior. ACS Sustainable Chemistry and Engineering, 2020, 8, 5584-5594.	6.7	53
117	Conversion of Loblolly pine biomass residues to bio-oil in a two-step process: Fast pyrolysis in the presence of zeolite and catalytic hydrogenation. Industrial Crops and Products, 2020, 148, 112318.	5.2	21
118	Novel Modification of Collagen: Realizing Desired Water Solubility and Thermostability in a Conflict-Free Way. ACS Omega, 2020, 5, 5772-5780.	3.5	14
119	Biochars from Lignin-rich Residue of Furfural Manufacturing Process for Heavy Metal Ions Remediation. Materials, 2020, 13, 1037.	2.9	8
120	A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chemical Engineering Journal, 2020, 396, 125318.	12.7	93
121	A self-cleaning and photocatalytic cellulose-fiber- supported "Ag@AgCl@MOF- cloth'' membrane for complex wastewater remediation. Carbohydrate Polymers, 2020, 247, 116691.	10.2	83
122	Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chemical Engineering Journal, 2020, 401, 126129.	12.7	92
123	Mild potassium hydroxide-based alkaline integrated biorefinery process of Kash (Saccharum) Tj ETQq1 1 0.784314	4 rgBT /Ov	verjock 10 T
124	Preparation and Characterization of Various Kraft Lignins and Impact on Their Pyrolysis Behaviors. Industrial & Engineering Chemistry Research, 2020, 59, 3310-3320.	3.7	20
125	C-nanocoated ZnO by TEMPO-oxidized cellulose templating for improved photocatalytic performance. Carbohydrate Polymers, 2020, 235, 115958.	10.2	27
126	A New Kind of Nonconventional Luminogen Based on Aliphatic Polyhydroxyurethane and Its Potential Application in Ink-Free Anticounterfeiting Printing. ACS Applied Materials & Interfaces, 2020, 12, 11005-11015.	8.0	38

Υονςήλο Νι

#	Article	IF	CITATIONS
127	High efficiency pyrolysis of used cigarette filters for ester-rich bio-oil through microwave-assisted heating. Journal of Cleaner Production, 2020, 257, 120596.	9.3	26
128	A simple and effective approach to fabricate lignin nanoparticles with tunable sizes based on lignin fractionation. Green Chemistry, 2020, 22, 2011-2017.	9.0	140
129	Comparison of single-stage and two-stage hydrothermal pretreatments for improving hemicellulose separation from bamboo chips. Wood Science and Technology, 2020, 54, 547-557.	3.2	4
130	A facile method for in situ fabrication of silica/cellulose aerogels and their application in CO2 capture. Carbohydrate Polymers, 2020, 236, 116079.	10.2	35
131	Efficient Fractionation of Corn Stover for Biorefinery Using a Sustainable Pathway. ACS Sustainable Chemistry and Engineering, 2020, 8, 3454-3464.	6.7	28
132	Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. Journal of Materials Chemistry A, 2020, 8, 5442-5448.	10.3	44
133	Mild One-Pot Lignocellulose Fractionation Based on Acid-Catalyzed Biphasic Water/Phenol System to Enhance Components' Processability. ACS Sustainable Chemistry and Engineering, 2020, 8, 2772-2782.	6.7	34
134	Sustainable and Biodegradable Copolymers from SO ₂ and Renewable Eugenol: A Novel Urea Fertilizer Coating Material with Superio Slow Release Performance. Macromolecules, 2020, 53, 936-945.	4.8	38
135	Superhydrophobic wood grafted by poly(2-(perfluorooctyl)ethyl methacrylate) via ATRP with self-cleaning, abrasion resistance and anti-mold properties. Holzforschung, 2020, 74, 799-809.	1.9	17
136	Transparent and conductive cellulose film by controllably growing aluminum doped zinc oxide on regenerated cellulose film. Cellulose, 2020, 27, 4847-4855.	4.9	16
137	Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. Journal of Materiomics, 2020, 6, 523-531.	5.7	72
138	Chemically modified self-doped biocarbon via novel sulfonation assisted sacrificial template method for high performance flexible all solid-state supercapacitor. Journal of Colloid and Interface Science, 2020, 574, 33-42.	9.4	63
139	Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1â€, 2â€, and 3â€Ð Nanocellulosic Materials. Small, 2020, 16, e1906567.	10.0	122
140	Spider web-inspired ultra-stable 3D Ti3C2TX (MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation. Composites Part B: Engineering, 2020, 197, 108187.	12.0	41
141	Separation of hemicellulose and cellulose from wood pulp using a γ-valerolactone (GVL)/water mixture. Separation and Purification Technology, 2020, 248, 117071.	7.9	25
142	Chitosan-Nanocellulose Composites for Regenerative Medicine Applications. Current Medicinal Chemistry, 2020, 27, 4584-4592.	2.4	29
143	Study on the Anti-Biodegradation Property of Tunicate Cellulose. Polymers, 2020, 12, 3071.	4.5	9
144	Flexible and conductive cellulose substrate by layered growth of silver nanowires and indium-doped tin oxide. BioResources, 2020, 15, 4699-4710.	1.0	4

#	Article	IF	CITATIONS
145	Effect of using regenerated combined FAU and MOR zeolites as catalysts during the pyrolysis of kraft lignin. BioResources, 2020, 16, 417-440.	1.0	6
146	Using cupriethylenediamine (CED) solution to decrease cellulose fibre network strength for removal of pulp fibre plugs. Canadian Journal of Chemical Engineering, 2019, 97, 662-667.	1.7	0
147	Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nature Communications, 2019, 10, 3590.	12.8	65
148	A lignin-containing cellulose hydrogel for lignin fractionation. Green Chemistry, 2019, 21, 5222-5230.	9.0	89
149	Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes. International Journal of Biological Macromolecules, 2019, 139, 640-646.	7.5	34
150	Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydrate Polymers, 2019, 223, 115061.	10.2	58
151	Flame retardant nanocomposites based on 2D layered nanomaterials: a review. Journal of Materials Science, 2019, 54, 13070-13105.	3.7	75
152	Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals. Carbohydrate Polymers, 2019, 222, 115037.	10.2	47
153	Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose, 2019, 26, 6891-6901.	4.9	25
154	Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation. Carbohydrate Polymers, 2019, 222, 115042.	10.2	86
155	An effective metal controller used for enhancing cellulose protection in oxygen delignification. Cellulose, 2019, 26, 7099-7106.	4.9	2
156	Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose, 2019, 26, 6393-6400.	4.9	18
157	A Facile Preparation of Super Longâ€Term Stable Lignin Nanoparticles from Black Liquor. ChemSusChem, 2019, 12, 5239-5245.	6.8	67
158	Applications of Cellulose-based Materials in Sustained Drug Delivery Systems. Current Medicinal Chemistry, 2019, 26, 2485-2501.	2.4	120
159	Nonmetal Schiff-Base Complex-Anchored Cellulose as a Novel and Reusable Catalyst for the Solvent-Free Ring-Opening Addition of CO ₂ with Epoxides. Industrial & Engineering Chemistry Research, 2019, 58, 17255-17265.	3.7	23
160	Vitrimer-Cellulose Paper Composites: A New Class of Strong, Smart, Green, and Sustainable Materials. ACS Applied Materials & Interfaces, 2019, 11, 36090-36099.	8.0	67
161	A highly efficient thermo responsive palladium nanoparticles incorporated guar gum hydrogel for effective catalytic reactions. Carbohydrate Polymers, 2019, 226, 115289.	10.2	22
162	Ultrasonic treatment for enhancing the accessibility and reactivity of softwood rayon-grade kraft-based dissolving pulp. Cellulose, 2019, 26, 9287-9294.	4.9	8

Υονghao Νι

#	Article	IF	CITATIONS
163	An integrated transparent, UV-filtering organohydrogel sensor <i>via</i> molecular-level ion conductive channels. Journal of Materials Chemistry A, 2019, 7, 4525-4535.	10.3	143
164	Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification. Carbohydrate Polymers, 2019, 211, 257-265.	10.2	43
165	Isolation and Characterization of Microcrystalline Cellulose from Bamboo Pulp Through Extremely Low Acid Hydrolysis. Journal of Wood Chemistry and Technology, 2019, 39, 242-254.	1.7	15
166	Lignin-Based Nanoparticles Stabilized Pickering Emulsion for Stability Improvement and Thermal-Controlled Release of <i>trans</i> -Resveratrol. ACS Sustainable Chemistry and Engineering, 2019, 7, 13497-13504.	6.7	103
167	Effect of the particle size of magnesium hydroxide on the cellulose polymerization during the oxygen delignification of radiata pine kraft pulp. Cellulose, 2019, 26, 6571-6581.	4.9	2
168	Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11175-11185.	6.7	127
169	Using Green γ-Valerolactone/Water Solvent To Decrease Lignin Heterogeneity by Gradient Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10112-10120.	6.7	68
170	Mussel-Inspired Nanocomposite Hydrogel-Based Electrodes with Reusable and Injectable Properties for Human Electrophysiological Signals Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 7918-7925.	6.7	83
171	Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOFâ€199s nanocatalysts for catalytic reduction of 4â€nitrophenol. Applied Organometallic Chemistry, 2019, 33, e4865.	3.5	44
172	Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Bioresource Technology, 2019, 281, 440-448.	9.6	54
173	Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose, 2019, 26, 4061-4069.	4.9	23
174	Fabrication of Bacterial Cellulose/Polyaniline Nanocomposite Paper with Excellent Conductivity, Strength, and Flexibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 8215-8225.	6.7	60
175	Cellulose-supported magnetic Fe3O4–MOF composites for enhanced dye removal application. Cellulose, 2019, 26, 4909-4920.	4.9	69
176	Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chemical Engineering Journal, 2019, 370, 1039-1047.	12.7	230
177	Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydrate Polymers, 2019, 215, 289-295.	10.2	68
178	Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium(III) removal. International Journal of Biological Macromolecules, 2019, 132, 478-486.	7.5	47
179	Dual-functionalized hyaluronic acid as a facile modifier to prepare polyanionic collagen. Carbohydrate Polymers, 2019, 215, 358-365.	10.2	15
180	A Comparison of the Performance of Two Kinds of Waterborne Coatings on Bamboo and Bamboo Scrimber. Coatings, 2019, 9, 161.	2.6	10

#	Article	IF	CITATIONS
181	An Eco-Friendly Method to Get a Bio-Based Dicarboxylic Acid Monomer 2,5-Furandicarboxylic Acid and Its Application in the Synthesis of Poly(hexylene 2,5-furandicarboxylate) (PHF). Polymers, 2019, 11, 197.	4.5	21
182	Nano-Cellulose/MOF Derived Carbon Doped CuO/Fe3O4 Nanocomposite as High Efficient Catalyst for Organic Pollutant Remedy. Nanomaterials, 2019, 9, 277.	4.1	36
183	Preparation and Characterization of Lignin-Containing Cellulose Nanofibril from Poplar High-Yield Pulp via TEMPO-Mediated Oxidation and Homogenization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6131-6139.	6.7	84
184	Adhesive, Transparent Tannic Acid@ Sulfonated Lignin-PAM Ionic Conductive Hydrogel Electrode with Anti-UV, Antibacterial and Mild Antioxidant Function. Materials, 2019, 12, 4135.	2.9	18
185	3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 2019, 203, 71-86.	10.2	232
186	Preparation of High-Strength Sustainable Lignocellulose Gels and Their Applications for Antiultraviolet Weathering and Dye Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 2998-3009.	6.7	60
187	Poly dimethyl diallyl ammonium chloride assisted cellulase pretreatment for pulp refining efficiency enhancement. Carbohydrate Polymers, 2019, 203, 342-348.	10.2	12
188	Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 2019, 26, 2502-2513.	2.4	32
189	Determination of Interfiber Bonded Area Based on the Confocal Laser Scanning Microscopy Technique. Industrial & Engineering Chemistry Research, 2018, 57, 6153-6160.	3.7	2
190	A facile template approach to preparing stable NFC/Ag/polyaniline nanocomposites for imparting multifunctionality to paper. Carbohydrate Polymers, 2018, 194, 97-102.	10.2	10
191	Enhancing the Fock reactivity of dissolving pulp by the combined prerefining and poly dimethyl diallyl ammonium chloride-assisted cellulase treatment. Bioresource Technology, 2018, 260, 135-140.	9.6	14
192	Cellulosic Cr(salen) complex as an efficient and recyclable catalyst for copolymerization of SO2 with epoxide. Carbohydrate Polymers, 2018, 194, 170-176.	10.2	20
193	Ultrasoft Self-Healing Nanoparticle-Hydrogel Composites with Conductive and Magnetic Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 6395-6403.	6.7	87
194	Heteropoly acid catalytic treatment for reactivity enhancement and viscosity control of dissolving pulp. Bioresource Technology, 2018, 253, 182-187.	9.6	24
195	Aqueous Dispersion of Carbon Fibers and Expanded Graphite Stabilized from the Addition of Cellulose Nanocrystals to Produce Highly Conductive Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 3291-3298.	6.7	33
196	Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review. Journal of Agricultural and Food Chemistry, 2018, 66, 8-19.	5.2	100
197	Effective and reusable microcrystalline cellulosic Salen complexes for epoxidation of alpha-pinene. Cellulose, 2018, 25, 1281-1289.	4.9	6
198	Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Carbohydrate Polymers, 2018, 193, 82-88.	10.2	100

#	Article	IF	CITATIONS
199	Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, 2018, 251, 1-6.	9.6	25
200	Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. Journal of the Science of Food and Agriculture, 2018, 98, 3089-3097.	3.5	35
201	Determination of the Acetyl Group in Biomass and Its Products by Headspace Gas Chromatography. Energy & Fuels, 2018, 32, 450-454.	5.1	4
202	Self-Healing Cellulose Nanocrystals-Containing Gels via Reshuffling of Thiuram Disulfide Bonds. Polymers, 2018, 10, 1392.	4.5	36
203	A new approach to improve dissolving pulp properties: spraying cellulase on rewetted pulp at a high fiber consistency. Cellulose, 2018, 25, 6989-7002.	4.9	11
204	A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose, 2018, 25, 7043-7051.	4.9	61
205	Diallyl dimethyl ammonium chloride-grafted cellulose filter membrane via ATRP for selective removal of anionic dye. Cellulose, 2018, 25, 7261-7275.	4.9	38
206	Determination of pinene content in black liquor by solvent-assisted/pyrogallol-protected headspace gas chromatography (HS-GC). Holzforschung, 2018, 72, 973-978.	1.9	0
207	Determination of cellulose derived 5-hydroxymethyl-2-furfural content in lignocellulosic biomass hydrolysate by headspace gas chromatography. Cellulose, 2018, 25, 3843-3851.	4.9	7
208	Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols. Cellulose, 2018, 25, 5157-5173.	4.9	15
209	Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells. Cellulose, 2018, 25, 5113-5122.	4.9	37
210	Ultraflexible Self-Healing Guar Gum-Glycerol Hydrogel with Injectable, Antifreeze, and Strain-Sensitive Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3397-3404.	5.2	163
211	Enhanced enzymatic hydrolysis of cellulose from waste paper fibers by cationic polymers addition. Carbohydrate Polymers, 2018, 200, 248-254.	10.2	20
212	Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose, 2018, 25, 3733-3753.	4.9	46
213	Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal. Carbohydrate Polymers, 2018, 195, 495-504.	10.2	62
214	Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride. ACS Sustainable Chemistry and Engineering, 2018, 6, 13168-13176.	6.7	46
215	Synergistic effects of enzyme pretreatment for hemicellulose separation from paper-grade pulp in ionic liquid/water. Cellulose, 2018, 25, 4193-4198.	4.9	7
216	A facile preparation strategy for conductive and magnetic agarose hydrogels with reversible restorability composed of nanofibrillated cellulose, polypyrrole, and Fe3O4. Cellulose, 2018, 25, 4565-4575.	4.9	16

#	Article	IF	CITATIONS
217	Regenerated cellulose by the Lyocell process, a brief review of the process and properties. BioResources, 2018, 13, 4577-4592.	1.0	94
218	Improvement of Stability of Tea Polyphenols: A Review. Current Pharmaceutical Design, 2018, 24, 3410-3423.	1.9	16
219	Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties. ACS Applied Materials & Interfaces, 2017, 9, 5477-5485.	8.0	122
220	Interplay of dopants and defects in magnetic evolution of La and Fe co-doped TiO 2 nanoparticle. Journal of Sol-Gel Science and Technology, 2017, 83, 365-374.	2.4	8
221	Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into "sticky―superhydrophobic paper. Carbohydrate Polymers, 2017, 174, 95-102.	10.2	19
222	Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydrate Polymers, 2017, 169, 9-15.	10.2	63
223	Facile preparation of regenerated cellulose film from cotton linter using organic electrolyte solution (OES). Cellulose, 2017, 24, 1631-1639.	4.9	16
224	Kinetics and mechanism of hemicelluloses removal from cellulosic fibers during the cold caustic extraction process. Bioresource Technology, 2017, 234, 61-66.	9.6	18
225	Anchoring 20(R)-Ginsenoside Rg3 onto Cellulose Nanocrystals To Increase the Hydroxyl Radical Scavenging Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 7507-7513.	6.7	24
226	Ethylene Control Technologies in Extending Postharvest Shelf Life of Climacteric Fruit. Journal of Agricultural and Food Chemistry, 2017, 65, 7308-7319.	5.2	79
227	Multifunctional self-assembling hydrogel from guar gum. Chemical Engineering Journal, 2017, 330, 1044-1051.	12.7	68
228	TEMPO-Oxidized Waste Cellulose as Reinforcement for Recycled Fiber Networks. Industrial & Engineering Chemistry Research, 2017, 56, 15065-15071.	3.7	9
229	Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp. Bioresource Technology, 2017, 224, 439-444.	9.6	29
230	Effects of Cellulose Nanofibers Filling and Palmitic Acid Emulsions Coating on the Physical Properties of Fish Gelatin Films. Food Biophysics, 2017, 12, 23-32.	3.0	38
231	Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydrate Polymers, 2017, 156, 253-258.	10.2	101
232	Catalytic Transfer Hydrogenation of Biobased HMF to 2,5-Bis-(Hydroxymethyl)Furan over Ru/Co3O4. Catalysts, 2017, 7, 92.	3.5	42
233	Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 2016, 151, 1-8.	10.2	110
234	Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system. Scientific Reports, 2016, 6, 36497.	3.3	40

Υονghao Νι

#	Article	IF	CITATIONS
235	Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films. Journal of Food Science, 2016, 81, E1151-7.	3.1	12
236	TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydrate Polymers, 2016, 151, 326-334.	10.2	96
237	Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper. Carbohydrate Polymers, 2016, 142, 183-188.	10.2	51
238	Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohydrate Polymers, 2015, 123, 157-163.	10.2	116
239	Combined mechanical and enzymatic treatments for improving the Fock reactivity of hardwood kraft-based dissolving pulp. Cellulose, 2015, 22, 803-809.	4.9	39
240	Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Bioresource Technology, 2015, 192, 501-506.	9.6	42
241	Improvement of Furfural Production from Concentrated PreHydrolysis Liquor (PHL) of a Kraft-Based Hardwood Dissolving Pulp Production Process. Journal of Wood Chemistry and Technology, 2015, 35, 260-269.	1.7	14
242	Synthesis of mesoporous α-Fe2O3 via sol–gel methods using cellulose nano-crystals (CNC) as template and its photo-catalytic properties. Materials Letters, 2015, 159, 218-220.	2.6	31
243	Development of poly(acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose, 2015, 22, 2499-2506.	4.9	30
244	Enhancing hemicelluloses removal from a softwood sulfite pulp. Bioresource Technology, 2015, 192, 11-16.	9.6	41
245	Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydrate Polymers, 2015, 126, 175-178.	10.2	64
246	Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption. Carbohydrate Polymers, 2015, 132, 598-605.	10.2	16
247	Enhancing antibacterium and strength of cellulosic paper by coating triclosan-loaded nanofibrillated cellulose (NFC). Carbohydrate Polymers, 2015, 117, 996-1001.	10.2	52
248	Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process. Bioresource Technology, 2014, 155, 111-115.	9.6	73
249	A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresource Technology, 2014, 154, 109-113.	9.6	108
250	Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose, 2014, 21, 4569-4581.	4.9	84
251	Binding of Sodium Cholate In Vitro by Cationic Microfibrillated Cellulose. Industrial & Engineering Chemistry Research, 2014, 53, 18508-18513.	3.7	19
252	Biopolymers for surface engineering of paper-based products. Cellulose, 2014, 21, 3145-3160.	4.9	64

Υονσμάο Νι

#	Article	IF	CITATIONS
253	Imparting Cellulosic Paper of High Conductivity by Surface Coating of Dispersed Graphite. Industrial & Engineering Chemistry Research, 2014, 53, 10119-10124.	3.7	26
254	Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydrate Polymers, 2014, 111, 419-424.	10.2	68
255	Application of Polyaniline/Clay Combination to Cellulosic Paper as an Approach to Conductivity Development. BioResources, 2014, 9, .	1.0	8
256	Microstructure, distribution and properties of conductive polypyrrole/cellulose fiber composites. Cellulose, 2013, 20, 1587-1601.	4.9	50
257	Viscosity of Prehydrolysis Liquor of a Hardwood Kraft-Based Dissolving Pulp Production Process. Industrial & Engineering Chemistry Research, 2013, 52, 3974-3979.	3.7	13
258	Lime Treatment of Prehydrolysis Liquor from the Kraft-Based Dissolving Pulp Production Process. Industrial & Engineering Chemistry Research, 2012, 51, 662-667.	3.7	26
259	Adsorption of Lignocelluloses Dissolved in Prehydrolysis Liquor of Kraft-Based Dissolving Pulp Process on Oxidized Activated Carbons. Industrial & Engineering Chemistry Research, 2011, 50, 11706-11711.	3.7	31
260	Fiber Quality Analysis: OpTest Fiber Quality Analyzer versus L&W Fiber Tester. Industrial & Engineering Chemistry Research, 2011, 50, 12572-12578.	3.7	25
261	Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresource Technology, 2011, 102, 10035-10039.	9.6	51
262	Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 2011, 18, 451-459.	4.9	248
263	Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp. Bioresource Technology, 2011, 102, 2829-2833.	9.6	35
264	Interaction of cationic modified poly vinyl alcohol with high yield pulp. Cellulose, 2010, 17, 1021-1031.	4.9	13
265	Simulating the impact of kraft pulping and bleaching parameters on Eucalyptus camaldulensis pulp properties using MATLAB. Canadian Journal of Chemical Engineering, 2010, 88, 455-461.	1.7	1
266	Using cationic polyvinyl alcohol (C-PVA) to improve the strength of wood-free papers containing high-yield pulp (HYP). Holzforschung, 2010, 64, .	1.9	8
267	Characterization of high-yield pulp (HYP) by the solute exclusion technique. Bioresource Technology, 2009, 100, 6630-6634.	9.6	50
268	A Review of Recent Technological Advances in the Brightening of High-Yield Pulps. Canadian Journal of Chemical Engineering, 2008, 83, 610-617.	1.7	9
269	Electrically Conductive Fibre Composites Prepared from Polypyrrole-Engineered Pulp Fibres. Canadian Journal of Chemical Engineering, 2008, 83, 896-903.	1.7	21
270	Further Understanding on the Cationic Demand of Dissolved Substances During Peroxide Bleaching of a Spruce TMP. Journal of Wood Chemistry and Technology, 2005, 24, 153-168.	1.7	25

#	Article	IF	CITATIONS
271	Further Understanding of the Chemistry of Manganeseâ€Induced Peroxide Decomposition. Canadian Journal of Chemical Engineering, 2003, 81, 968-972.	1.7	20
272	Further understanding on polyethyleneimine-induced rosin ester sizing. Nordic Pulp and Paper Research Journal, 2003, 18, 5-9.	0.7	2
273	Mechanism of the ClO ₂ generation from the H ₂ O ₂ â€HClO ₃ reaction. Canadian Journal of Chemical Engineering, 2000, 78, 827-833.	1.7	6
274	Improving Peroxide Bleaching of Chemical Pulps by Stabilizing Manganese. Journal of Wood Chemistry and Technology, 1999, 19, 323-334.	1.7	5
275	Quantitative description of the chloride effect on chlorine dioxide generation from the ClO ₂ â€HOCl reaction. Canadian Journal of Chemical Engineering, 1998, 76, 921-926.	1.7	7
276	Mechanism and kinetics of chlorine dioxide reaction with hydrogen peroxide under acidic conditions. Canadian Journal of Chemical Engineering, 1997, 75, 31-36.	1.7	9
277	Influence of Lignins on the Degradation of Cellulose During Ozone Treatment. Journal of Wood Chemistry and Technology, 1995, 15, 413-430.	1.7	23
278	What are the differences between caustic extractions of Cl2 and of Cl02 bleached pulps?. Nordic Pulp and Paper Research Journal, 1995, 10, 57-61.	0.7	0