Liang-Nian He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5299668/publications.pdf

Version: 2024-02-01

226 papers 13,448 citations

65 h-index 26613 107 g-index

249 all docs

249 docs citations

249 times ranked 8167 citing authors

#	Article	IF	CITATIONS
1	Efficient, selective and sustainable catalysis of carbon dioxide. Green Chemistry, 2017, 19, 3707-3728.	9.0	797
2	Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion. Energy and Environmental Science, 2012, 5, 6602.	30.8	446
3	CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Advances, 2011, 1, 545.	3.6	335
4	Upgrading Carbon Dioxide by Incorporation into Heterocycles. ChemSusChem, 2015, 8, 52-62.	6.8	320
5	Lewis Basic Ionic Liquidsâ€Catalyzed Conversion of Carbon Dioxide to Cyclic Carbonates. Advanced Synthesis and Catalysis, 2010, 352, 2233-2240.	4.3	252
6	Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chemistry, 2005, 7, 518.	9.0	248
7	Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride. Journal of Catalysis, 2002, 209, 547-550.	6.2	238
8	Homogeneous hydrogenation of carbon dioxide to methanol. Catalysis Science and Technology, 2014, 4, 1498-1512.	4.1	236
9	Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A, 2006, 249, 143-148.	4.8	221
10	Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chemistry, 2002, 4, 230-234.	9.0	217
11	Equimolar CO ₂ Capture by Nâ€Substituted Amino Acid Salts and Subsequent Conversion. Angewandte Chemie - International Edition, 2012, 51, 11306-11310.	13.8	206
12	CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy and Environmental Science, 2011, 4, 3971.	30.8	205
13	Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution. Journal of Catalysis, 2005, 233, 119-122.	6.2	200
14	Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catalysis Communications, 2007, 8, 167-172.	3.3	196
15	Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chemistry, 2012, 14, 519.	9.0	186
16	Efficient chemical fixation of CO2 promoted by a bifunctional Ag2WO4/Ph3P system. Green Chemistry, 2014, 16, 1633.	9.0	185
17	Bifunctional Metalâ€Salen Complexes as Efficient Catalysts for the Fixation of CO ₂ with Epoxides under Solventâ€Free Conditions. ChemSusChem, 2008, 1, 236-241.	6.8	180
18	Betaine Catalysis for Hierarchical Reduction of CO ₂ with Amines and Hydrosilane To Form Formamides, Aminals, and Methylamines. Angewandte Chemie - International Edition, 2017, 56, 7425-7429.	13.8	176

#	Article	IF	CITATIONS
19	Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource Technology, 2015, 183, 93-100.	9.6	174
20	Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Journal of Molecular Catalysis A, 2007, 271, 284-289.	4.8	166
21	Quaternary Ammonium Bromide Functionalized Polyethylene Glycol: A Highly Efficient and Recyclable Catalyst for Selective Synthesis of 5-Aryl-2-oxazolidinones from Carbon Dioxide and Aziridines Under Solvent-Free Conditions. Journal of Organic Chemistry, 2008, 73, 4709-4712.	3.2	164
22	Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds. Chinese Journal of Chemistry, 2018, 36, 644-659.	4.9	161
23	An efficient and recyclable tetraoxo-coordinated zinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure. Green Chemistry, 2016, 18, 226-231.	9.0	156
24	New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chemistry, 2003, 5, 92-94.	9.0	146
25	Catalyst-free approach for solvent-dependent selective oxidation of organic sulfides with oxone. Green Chemistry, 2012, 14, 957.	9.0	146
26	Bifunctional Silver(I) Complex atalyzed CO ₂ Conversion at Ambient Conditions: Synthesis of αâ€Methylene Cyclic Carbonates and Derivatives. ChemSusChem, 2015, 8, 821-827.	6.8	135
27	Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(<scp>ii</scp>)-substituted polyoxometalate-based ionic liquids. Green Chemistry, 2016, 18, 282-287.	9.0	129
28	A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Letters, 2006, 47, 1271-1275.	1.4	128
29	Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chemistry, 2007, 9, 566-571.	9.0	127
30	Lewis basic ionic liquids-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Green Chemistry, 2010, 12, 1850.	9.0	126
31	Photocarboxylation with CO ₂ : an appealing and sustainable strategy for CO ₂ fixation. Green Chemistry, 2020, 22, 7301-7320.	9.0	115
32	Catalytic fixation of CO ₂ to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chemistry, 2013, 15, 110-115.	9.0	114
33	Iron-catalyzed selective oxidation of sulfides to sulfoxides with the polyethylene glycol/O ₂ system. Green Chemistry, 2012, 14, 130-135.	9.0	113
34	In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system. Green Chemistry, 2013, 15, 2825.	9.0	112
35	Fluorideâ€Catalyzed Methylation of Amines by Reductive Functionalization of CO ₂ with Hydrosilanes. Chemistry - A European Journal, 2016, 22, 16489-16493.	3.3	105
36	TEMPO and Carboxylic Acid Functionalized Imidazolium Salts/Sodium Nitrite: An Efficient, Reusable, Transition Metalâ€Free Catalytic System for Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2009, 351, 2209-2216.	4.3	103

#	Article	IF	CITATIONS
37	Copper(I)@Carbon-Catalyzed Carboxylation of Terminal Alkynes with CO ₂ at Atmospheric Pressure. ACS Catalysis, 2015, 5, 3940-3944.	11.2	101
38	Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron, 2010, 66, 4063-4067.	1.9	100
39	Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chemical Communications, 2011, 47, 2697.	4.1	100
40	Carboxylation of olefins/alkynes with CO2 to industrially relevant acrylic acid derivatives. Journal of CO2 Utilization, 2013, 1, 60-68.	6.8	99
41	Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO ₂ in ambient conditions. Green Chemistry, 2015, 17, 474-479.	9.0	98
42	A Porous Metal–Organic Framework Assembled by [Cu ₃₀] Nanocages: Serving as Recyclable Catalysts for CO ₂ Fixation with Aziridines. Advanced Science, 2016, 3, 1600048.	11.2	96
43	Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions. Advanced Synthesis and Catalysis, 2016, 358, 1251-1258.	4.3	95
44	Green Catalytic Process for Cyclic Carbonate Synthesis from Carbon Dioxide under Mild Conditions. Chemical Record, 2016, 16, 1337-1352.	5.8	93
45	Carbon dioxide chemistry: Examples and challenges in chemical utilization of carbon dioxide. Pure and Applied Chemistry, 2009, 81, 2069-2080.	1.9	92
46	Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4.0]-undec-7-ene for the cycloaddition of epoxides with CO ₂ at atmospheric pressure. Green Chemistry, 2016, 18, 2871-2876.	9.0	91
47	Photoinduced radical-initiated carboxylative cyclization of allyl amines with carbon dioxide. Green Chemistry, 2017, 19, 1240-1244.	9.0	89
48	Cluster-based MOFs with accelerated chemical conversion of CO ₂ through C–C bond formation. Chemical Communications, 2017, 53, 6013-6016.	4.1	89
49	Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene. Green Chemistry, 2007, 9, 882.	9.0	87
50	Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chemistry, 2011, 13, 2351.	9.0	87
51	Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Letters, 2010, 51, 2931-2934.	1.4	85
52	Zirconyl chloride: an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron, 2009, 65, 6204-6210.	1.9	81
53	Carboxylate-promoted reductive functionalization of CO ₂ with amines and hydrosilanes under mild conditions. Green Chemistry, 2017, 19, 1726-1731.	9.0	79
54	Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate. Green Chemistry, 2013, 15, 2401.	9.0	78

#	Article	IF	Citations
55	Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. Journal of Molecular Catalysis A, 2005, 241, 233-237.	4.8	77
56	Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2012, 14, 2752.	9.0	77
57	Tungstate catalysis: pressure-switched 2- and 6-electron reductive functionalization of CO ₂ with amines and phenylsilane. Green Chemistry, 2018, 20, 1564-1570.	9.0	7 5
58	Hydrogen bonding-inspired organocatalysts for CO2 fixation with epoxides to cyclic carbonates. Catalysis Today, 2016, 263, 69-74.	4.4	74
59	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie - International Edition, 2020, 59, 8586-8593.	13.8	74
60	A CO2/H2O2-tunable reaction: direct conversion of styrene into styrene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green Chemistry, 2008, 10, 1218.	9.0	73
61	Inâ€Situ Generated Zinc(II) Catalyst for Incorporation of CO ₂ into 2â€Oxazolidinones with Propargylic Amines at Atmospheric Pressure. ChemSusChem, 2017, 10, 1210-1216.	6.8	73
62	Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO ₂ . Organic Letters, 2017, 19, 1490-1493.	4.6	70
63	Self-Neutralizing in Situ Acidic CO ₂ /H ₂ O System for Aerobic Oxidation of Alcohols Catalyzed by TEMPO Functionalized Imidazolium Salt/NaNO ₂ . Journal of Organic Chemistry, 2010, 75, 257-260.	3.2	69
64	Preparation of polystyrene-supported Lewis acidic Fe(III) ionic liquid and its application in catalytic conversion of carbon dioxide. Tetrahedron, 2012, 68, 3835-3842.	1.9	68
65	Highly efficient SO2 absorption/activation and subsequent utilization by polyethylene glycol-functionalized Lewis basic ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 15832.	2.8	66
66	Highly Efficient SO ₂ Absorption and Its Subsequent Utilization by Weak Base/Polyethylene Glycol Binary System. Environmental Science & Environmental Science & Technology, 2013, 47, 1598-1605.	10.0	64
67	Zn-salen complexes with multiple hydrogen bonding donor and protic ammonium bromide: Bifunctional catalysts for CO2 fixation with epoxides at atmospheric pressure. Journal of Molecular Catalysis A, 2016, 420, 208-215.	4.8	64
68	Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition. Catalysis Today, 2020, 339, 337-343.	4.4	62
69	Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide. Catalysis Communications, 2008, 9, 1754-1758.	3.3	61
70	Ethylene carbonate as a unique solvent for palladium-catalyzed Wacker oxidation using oxygen as the sole oxidant. Green Chemistry, 2009, 11, 1317.	9.0	61
71	Carbon Dioxide in Heterocyclic Synthesis. Current Organic Chemistry, 2011, 15, 621-646.	1.6	61
72	Design of task-specific ionic liquids for catalytic conversion of CO2 with aziridines under mild conditions. Catalysis Today, 2013, 200, 2-8.	4.4	57

#	Article	IF	Citations
73	Copper(II) chloride-catalyzed Glaser oxidative coupling reaction in polyethylene glycol. Tetrahedron Letters, 2011, 52, 3485-3488.	1.4	56
74	Copper catalysis: ligand-controlled selective <i>N</i> methylation or <i>N</i> formylation of amines with CO ₂ and phenylsilane. Green Chemistry, 2018, 20, 4853-4858.	9.0	56
75	Waste Recycling: Ionic Liquid-Catalyzed 4-Electron Reduction of CO ₂ with Amines and Polymethylhydrosiloxane Combining Experimental and Theoretical Study. ACS Sustainable Chemistry and Engineering, 2018, 6, 8130-8135.	6.7	55
76	Catalytic conversion of carbon dioxide to carboxylic acid derivatives., 2015, 5, 17-33.		54
77	Tert-butyl nitrite: a metal-free radical initiator for aerobic cleavage of benzylic C bonds in compressed carbon dioxide. Green Chemistry, 2011, 13, 541.	9.0	53
78	Iron(iii)-based ionic liquid-catalyzed regioselective benzylation of arenes and heteroarenes. Green Chemistry, 2011, 13, 1182.	9.0	53
79	CO2 Capture and in situ Catalytic Transformation. Frontiers in Chemistry, 2019, 7, 525.	3.6	53
80	One-pot synthesis of dimethyl carbonate catalyzed by n-Bu4NBr/n-Bu3N from methanol, epoxides, and supercritical CO2. Applied Catalysis A: General, 2006, 301, 215-221.	4.3	52
81	Natural Amino Acid-Based Ionic Liquids as Efficient Catalysts for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent- Free Conditions. Letters in Organic Chemistry, 2010, 7, 73-78.	0.5	52
82	Transition-Metal-Free Catalysis for the Reductive ÂFunctionalization of CO2 with Amines. Synlett, 2018, 29, 548-555.	1.8	51
83	Protic ionic liquids-promoted efficient synthesis of quinazolines from 2-aminobenzonitriles and CO2 at ambient conditions. Journal of CO2 Utilization, 2016, 15, 115-122.	6.8	50
84	Efficient iron(iii)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chemical Communications, 2012, 48, 2024.	4.1	49
85	Reduction of sulfoxides and pyridine-N-oxides over iron powder with water as hydrogen source promoted by carbon dioxide. Green Chemistry, 2013, 15, 1274.	9.0	49
86	Metal-free chemoselective oxidation of sulfides by in situ generated Koser's reagent in aqueous media. Tetrahedron Letters, 2014, 55, 1818-1821.	1.4	49
87	Mesoporous zirconium phosphonates as efficient catalysts for chemical CO ₂ fixation. Green Chemistry, 2015, 17, 795-798.	9.0	49
88	Thermodynamically Favorable Synthesis of 2â€Oxazolidinones through Silverâ€Catalyzed Reaction of Propargylic Alcohols, CO _{2,} and 2â€Aminoethanols. ChemSusChem, 2016, 9, 2054-2058.	6.8	48
89	Organic synthesis using carbon dioxide as phosgene-free carbonyl reagent. Pure and Applied Chemistry, 2011, 84, 581-602.	1.9	47
90	Palladiumâ€Catalyzed Carboxylation of Benzyl Chlorides with Atmospheric Carbon Dioxide in Combination with Manganese/Magnesium Chloride. ChemCatChem, 2015, 7, 3972-3977.	3.7	47

#	Article	IF	Citations
91	Photocatalytic Oxidation and Subsequent Hydrogenolysis of Lignin Î ² -O-4 Models to Aromatics Promoted by In Situ Carbonic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 15032-15039.	6.7	47
92	Transition Metalâ€Catalyzed Reductive Functionalization of CO ₂ . European Journal of Organic Chemistry, 2019, 2019, 2437-2447.	2.4	46
93	Equimolar Carbon Absorption by Potassium Phthalimide and In Situ Catalytic Conversion Under Mild Conditions. ChemSusChem, 2014, 7, 1484-1489.	6.8	45
94	Sustainable Solid Catalysts for Cyclic Carbonate Synthesis from CO ₂ and Epoxide. Current Organic Chemistry, 2015, 19, 681-694.	1.6	45
95	Silver(I)-Promoted Cascade Reaction of Propargylic Alcohols, Carbon Dioxide, and Vicinal Diols: Thermodynamically Favorable Route to Cyclic Carbonates. ACS Omega, 2017, 2, 337-345.	3.5	44
96	Copper(I)-based ionic liquid-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure. Tetrahedron Letters, 2015, 56, 7059-7062.	1.4	41
97	Integrative Photoreduction of CO ₂ with Subsequent Carbonylation: Photocatalysis for Reductive Functionalization of CO ₂ . ChemSusChem, 2018, 11, 3382-3387.	6.8	40
98	Introduction to CO ₂ utilisation. Green Chemistry, 2021, 23, 3499-3501.	9.0	40
99	Coordination effect-regulated CO ₂ capture with an alkali metal onium salts/crown ether system. Green Chemistry, 2014, 16, 253-258.	9.0	39
100	Ferric Porphyrin-Based Porous Organic Polymers for CO ₂ Photocatalytic Reduction to Syngas with Selectivity Control. Chemistry of Materials, 2021, 33, 8863-8872.	6.7	39
101	Silver(I)â€Catalyzed Synthesis of βâ€Oxopropylcarbamates from Propargylic Alcohols and CO ₂ Surrogate: A Gasâ€Free Process. ChemSusChem, 2015, 8, 3967-3972.	6.8	38
102	Ionic Liquids Catalysis for Carbon Dioxide Conversion With Nucleophiles. Frontiers in Chemistry, 2018, 6, 462.	3.6	38
103	Copper(<scp>i</scp>)/phosphine-catalyzed tandem carboxylation/annulation of terminal alkynes under ambient pressure of CO ₂ : one-pot access to 3a-hydroxyisoxazolo[3,2-a]isoindol-8(3aH)-ones. Green Chemistry, 2015, 17, 4061-4067.	9.0	37
104	Polyoxometalate-based ionic liquids-promoted CO2 conversion. Science China Chemistry, 2016, 59, 507-516.	8.2	37
105	Chiral Tertiary Amine/ <scp>L</scp> â€Proline Cocatalyzed Enantioselective Morita–Baylis–Hillman (MBH) Reaction. European Journal of Organic Chemistry, 2008, 2008, 126-135.	2.4	36
106	Magnetic base catalysts for the chemical fixation of carbon dioxide to quinazoline-2,4(1H,3H)-diones. RSC Advances, 2014, 4, 28941-28946.	3.6	36
107	Construction of C–Cu Bond: A Useful Strategy in CO ₂ Conversion. Organometallics, 2020, 39, 1461-1475.	2.3	36
108	A novel method to synthesize diphenyl carbonate from carbon dioxide and phenol in the presence of methanol. Catalysis Science and Technology, 2011, 1, 1138.	4.1	34

#	Article	IF	Citations
109	Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Advances, 2015, 5, 15668-15673.	3.6	34
110	A rhenium catalyst with bifunctional pyrene groups boosts natural light-driven CO ₂ reduction. Green Chemistry, 2020, 22, 8614-8622.	9.0	34
111	An integrated process of CO ₂ capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system. RSC Advances, 2014, 4, 49995-50002.	3.6	33
112	Betaine Catalysis for Hierarchical Reduction of CO ₂ with Amines and Hydrosilane To Form Formamides, Aminals, and Methylamines. Angewandte Chemie, 2017, 129, 7533-7537.	2.0	31
113	Capture and Fixation of CO2 Promoted by Guanidine Derivatives. Australian Journal of Chemistry, 2014, 67, 980.	0.9	30
114	Protic ionic liquid-promoted synthesis of dimethyl carbonate from ethylene carbonate and methanol. Chinese Chemical Letters, 2020, 31, 667-672.	9.0	30
115	Tuning of Ionic Second Coordination Sphere in Evolved Rhenium Catalyst for Efficient Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2020, 13, 6284-6289.	6.8	30
116	Silver(I) atalyzed Three omponent Reaction of Propargylic Alcohols, Carbon Dioxide and Monohydric Alcohols: Thermodynamically Feasible Access to I²â€Oxopropyl Carbonates. Chemistry - an Asian Journal, 2016, 11, 2065-2071.	3.3	29
117	Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects. Catalysis Today, 2020, 356, 563-569.	4.4	29
118	Poly(ethylene glycol): an Alternative Solvent for the Synthesis of Cyclic Carbonate from Vicinal Halohydrin and Carbon Dioxide. Australian Journal of Chemistry, 2009, 62, 917.	0.9	28
119	Upgrading CO ₂ by Incorporation into Urethanes through Silverâ€Catalyzed Oneâ€Pot Stepwise Amidation Reaction. Chinese Journal of Chemistry, 2018, 36, 147-152.	4.9	28
120	Copperâ€Catalyzed and Protonâ€Directed Selective Hydroxymethylation of Alkynes with CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 3984-3988.	13.8	28
121	Efficient CO ₂ capture by tertiary amine-functionalized ionic liquids through Li ⁺ -stabilized zwitterionic adduct formation. Beilstein Journal of Organic Chemistry, 2014, 10, 1959-1966.	2.2	27
122	Ag ^I /TMGâ€Promoted Cascade Reaction of Propargyl Alcohols, Carbon Dioxide, and 2â€Aminoethanols to 2â€Oxazolidinones. ChemPhysChem, 2017, 18, 3182-3188.	2.1	26
123	Synthesis of Urea Derivatives from CO2 and Amines Catalyzed by Polyethylene Glycol Supported Potassium Hydroxide without Dehydrating Agents. Synlett, 2010, 2010, 1276-1280.	1.8	25
124	Polyethylene Glycol–Enhanced Chemoselective Synthesis of Organic Carbamates from Amines, CO ₂ , and Alkyl Halides. Synthetic Communications, 2011, 41, 3298-3307.	2.1	25
125	Proline-Catalyzed Synthesis of 5-Aryl-2-oxazolidinones from Carbon Dioxide and Aziridines Under Solvent-Free Conditions. Synthetic Communications, 2012, 42, 62-74.	2.1	25
126	DBU as activator for the N -iodosuccinimide promoted chemical fixation of carbon dioxide with epoxides. Journal of CO2 Utilization, 2017, 19, 28-32.	6.8	25

#	Article	IF	Citations
127	Integration of CO ₂ Reduction with Subsequent Carbonylation: Towards Extending Chemical Utilization of CO ₂ . ChemSusChem, 2018, 11, 2062-2067.	6.8	25
128	Cu(II)-Catalyzed Phosphonocarboxylative Cyclization Reaction of Propargylic Amines and Phosphine Oxide with CO ₂ . Journal of Organic Chemistry, 2020, 85, 14109-14120.	3.2	25
129	CO2 capture and utilization with solid waste. Green Chemical Engineering, 2022, 3, 199-209.	6.3	25
130	Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO ₂ Reduction in Aqueous Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
131	Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chemistry, 2009, 11, 1013.	9.0	24
132	Environmentally benign chemical fixation of CO2 catalyzed by the functionalized ion-exchange resins. Science China Chemistry, 2010, 53, 1578-1585.	8.2	23
133	Thermodynamically favorable protocol for the synthesis of 2-oxazolidinones via Cu(l)-catalyzed three-component reaction of propargylic alcohols, CO2 and 2-aminoethanols. Journal of CO2 Utilization, 2018, 25, 338-345.	6.8	23
134	Rhodium(<scp>i</scp>)-catalyzed Pauson–Khand-type reaction using formic acid as a CO surrogate: an alternative approach for indirect CO ₂ utilization. Green Chemistry, 2019, 21, 509-514.	9.0	23
135	Bifunctionalization of unsaturated bonds <i>via</i> carboxylative cyclization with CO ₂ : a sustainable access to heterocyclic compounds. Green Chemistry, 2021, 23, 9334-9347.	9.0	23
136	Adsorption of Hg $<$ sup $>$ 2+ $<$ /sup $>$ from aqueous solution on functionalized MCM-41. RSC Advances, 2012, 2, 1088-1095.	3.6	22
137	Reduced Graphene Oxide Supported Ag Nanoparticles: An Efficient Catalyst for CO ₂ Conversion at Ambient Conditions. ChemCatChem, 2020, 12, 4825-4830.	3.7	22
138	Synthesis of Oxazolidinones/Polyurethanes from Aziridines and CO2. Current Catalysis, 2012, 1, 107-124.	0.5	22
139	The Freeâ€Radical Chemistry of Polyethylene Glycol: Organic Reactions in Compressed Carbon Dioxide. ChemSusChem, 2009, 2, 755-760.	6.8	21
140	In situ acidic carbon dioxide/water system for selective oxybromination of electron-rich aromatics catalyzed by copper bromide. Catalysis Today, 2012, 194, 38-43.	4.4	21
141	Cu(<scp>ii</scp>)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)–C(alkyl) bonds. Chemical Communications, 2016, 52, 2145-2148.	4.1	21
142	NaZSM-5-catalyzed dimethyl carbonate synthesis via the transesterification of ethylene carbonate with methanol. Canadian Journal of Chemistry, 2011, 89, 544-548.	1.1	20
143	<i>In situ</i> Acidic Carbon Dioxide/Ethanol System for Selective Oxybromination of Aromatic Ethers Catalyzed by Copper Chloride. Advanced Synthesis and Catalysis, 2011, 353, 3187-3195.	4.3	20
144	Green chemistry education and activity in China. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 123-129.	5.9	20

#	Article	IF	Citations
145	Reductive Carboxylation of Unsaturated Hydrocarbons with Carbon Dioxide. Acta Chimica Sinica, 2016, 74, 17.	1.4	20
146	Ruthenium-promoted reductive transformation of CO2. Science China Chemistry, 2017, 60, 841-852.	8.2	19
147	Synthesis of \hat{l} ±-hydroxy ketones by copper(I)-catalyzed hydration of propargylic alcohols: CO2 as a cocatalyst under atmospheric pressure. Chinese Journal of Catalysis, 2019, 40, 1345-1351.	14.0	19
148	Metalâ€Free Photocatalytic Synthesis of <i>exo</i> â€Iodomethylene 2â€Oxazolidinones: An Alternative Strategy for CO ₂ Valorization with Solar Energy. ChemSusChem, 2019, 12, 5081-5085.	6.8	19
149	Copper(II) Triflateâ€Catalyzed Threeâ€Component Coupling of Aldehydes, Alkynes and Carbamates. Advanced Synthesis and Catalysis, 2010, 352, 2437-2440.	4.3	18
150	Cobalt-based catalysis for carboxylative cyclization of propargylic amines with CO2 at atmospheric pressure. Journal of CO2 Utilization, 2019, 34, 404-410.	6.8	18
151	52 Cyclic carbonate synthesis from carbon dioxide and epoxide catalyzed by samarium oxychloride supported on zirconia. Studies in Surface Science and Catalysis, 2003, , 259-262.	1.5	17
152	Facile synthesis of oxazolidinones catalyzed by n-Bu4NBr3/n-Bu4NBr directly from olefins, chloramine-T and carbon dioxide. Catalysis Communications, 2010, 11, 992-995.	3.3	17
153	New routes for CO2 activation and subsequent conversion. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 31-38.	5.9	17
154	Efficient Catalysts In situ Generated from Zinc, Amide and Benzyl Bromide for Epoxide/CO ₂ Coupling Reaction at Atmospheric Pressure. European Journal of Organic Chemistry, 2019, 2019, 1311-1316.	2.4	17
155	Tuning of visible light-driven CO ₂ reduction and hydrogen evolution activity by using POSS-modified porous organometallic polymers. Journal of Materials Chemistry A, 2021, 9, 16699-16705.	10.3	17
156	Transition Metal-Catalyzed Carboxylation of Terminal Alkynes with CO2. Mini-Reviews in Organic Chemistry, 2018, 15, 283-290.	1.3	17
157	Environmentally Benign Chemical Conversion of CO2 into Organic Carbonates Catalyzed by Phosphonium Salts. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 494-498.	1.6	16
158	One-pot stepwise synthesis of cyclic carbonates directly from olefins with CO2 promoted by K2S2O8/NaBr. Journal of CO2 Utilization, 2016, 16, 313-317.	6.8	16
159	Polyethylene glycol radical-initiated benzylic C–H bond oxygenation in compressed carbon dioxide. New Journal of Chemistry, 2009, 33, 1637.	2.8	15
160	PEG400-enhanced synthesis of gem-dichloroaziridines and gem-dichlorocyclopropanes via in situ generated dichlorocarbene. RSC Advances, 2013, 3, 19009.	3.6	15
161	Solubility Determination and Correlation of Gatifloxacin, Enrofloxacin, and Ciprofloxacin in Supercritical CO ₂ . Journal of Chemical & Engineering Data, 2017, 62, 4235-4243.	1.9	15
162	Efficient Iron atalyzed Reductive Nâ€Alkylation of Aromatic Amines with Carboxylic Acid and Phenylsilane. Asian Journal of Organic Chemistry, 2018, 7, 1815-1818.	2.7	15

#	Article	IF	CITATIONS
163	Carbon Capture with Simultaneous Activation and Its Subsequent Transformation. Advances in Inorganic Chemistry, 2014, 66, 289-345.	1.0	14
164	Ionic Liquid-Promoted Three-Component Domino Reaction of Propargyl Alcohols, Carbon Dioxide and 2-Aminoethanols: A Thermodynamically Favorable Synthesis of 2-Oxazolidinones. Molecules, 2018, 23, 3033.	3.8	14
165	Directly Bridging Indoles to 3,3′â€Bisindolylmethanes by Using Carboxylic Acids and Hydrosilanes under Mild Conditions. Chemistry - an Asian Journal, 2018, 13, 2664-2670.	3.3	14
166	Guanidinium Salt Functionalized PEG: An Effective and Recyclable Homo-geneous Catalyst for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent-Free Conditions. Synlett, 2007, 2007, 3058-3062.	1.8	13
167	Synthesis of Lactones and Other Heterocycles. Topics in Current Chemistry, 2017, 375, 21.	5.8	13
168	Catalyst-Free Process for the Synthesis of 5-Aryl-2-Oxazolidinones via Cycloaddition Reaction of Aziridines and Carbon Dioxide. Synlett, 2010, 2010, 2159-2163.	1.8	12
169	Capture and Utilization of Carbon Dioxide with Polyethylene Glycol. Springer Briefs in Molecular Science, 2012, , .	0.1	12
170	Propylene oxide as a dehydrating agent: potassium carbonate-catalyzed carboxylative cyclization of propylene glycol with CO ₂ in a polyethylene glycol/CO ₂ biphasic system. RSC Advances, 2016, 6, 32400-32404.	3.6	12
171	Carbon dioxide promoted reductive amination of aldehydes in water mediated by iron powder and catalytic palladium on activated carbon. Catalysis Today, 2016, 274, 35-39.	4.4	12
172	Protic ionic liquid-catalyzed synthesis of oxazolidinones using cyclic carbonates as both CO2 surrogate and sustainable solvent. Catalysis Today, 2019, 324, 167-173.	4.4	12
173	Cu(I)-Catalyzed Three-Component Reaction of Propargylic Alcohol, Secondary Amines and Atmospheric CO ₂ . Chinese Journal of Organic Chemistry, 2016, 36, 744.	1.3	12
174	In-plane benzene incorporated g-C3N4 microtubes: Enhanced visible light harvesting and carrier transportation for photocatalytic CO2 reduction. Fuel, 2022, 326, 125073.	6.4	12
175	An in situ acidic carbon dioxide/glycol system for aerobic oxidative iodination of electron-rich aromatics catalyzed by Fe(NO ₃) ₃ ·9H ₂ O. Catalysis Science and Technology, 2014, 4, 4308-4312.	4.1	11
176	Metal-promoted Carboxylation of Alkynes/allenes with Carbon Dioxide. Current Green Chemistry, 2015, 2, 14-25.	1.1	11
177	DMF-promoted reductive functionalization of CO2 with secondary amines and phenylsilane to methylamines. Pure and Applied Chemistry, 2018, 90, 1099-1107.	1.9	11
178	Efficient and Recyclable Cobalt(II)/Ionic Liquid Catalytic System for CO ₂ Conversion to Prepare 2â€Oxazolinones at Atmospheric Pressure. Chinese Journal of Chemistry, 2019, 37, 1223-1228.	4.9	11
179	An alternative route of CO2 conversion: Pd/C-catalyzed oxazolidinone hydrogenation to HCOOH and secondary alkyl-(2-arylethyl)amines with one stone two bird strategy. Journal of CO2 Utilization, 2019, 29, 74-81.	6.8	11
180	Facile synthesis of \hat{l}_{\pm} -aminophosphine oxides from diarylphosphine oxides, arynes and formamides. Chemical Communications, 2021, 57, 9578-9581.	4.1	11

#	Article	IF	Citations
181	Chemodivergent Synthesis of One-Carbon-Extended Alcohols via Copper-Catalyzed Hydroxymethylation of Alkynes with Formic Acid. Organic Letters, 2021, 23, 4997-5001.	4.6	11
182	Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO2 Reduction in Aqueous Media. Angewandte Chemie, 0 , , .	2.0	11
183	Efficient hydrogenation of imines over Fe and ZnO powder in a self-neutralizing acidic CO2–H2O system. RSC Advances, 2014, 4, 11867.	3.6	10
184	Fe(NO3)3 \hat{A} -9H2O-catalyzed aerobic oxidation of sulfides to sulfoxides under mild conditions with the aid of trifluoroethanol. Chinese Chemical Letters, 2015, 26, 539-542.	9.0	10
185	Highly Efficient Conversion of Propargylic Amines and CO ₂ Catalyzed by Nobleâ€Metalâ€Free [Zn ₁₁₆] Nanocages. Angewandte Chemie, 2020, 132, 8664-8671.	2.0	10
186	Oligomeric ricinoleic acid synthesis with a recyclable catalyst and application to preparing non-isocyanate polyhydroxyurethane. European Polymer Journal, 2021, 153, 110501.	5.4	10
187	Ionic Liquid-Modified Porous Organometallic Polymers as Efficient and Selective Photocatalysts for Visible-Light-Driven CO ₂ Reduction. Research, 2020, 2020, 9398285.	5.7	10
188	Methodologies for chemical utilization of CO2 to valuable compounds through molecular activation by efficient catalysts. Frontiers of Chemical Engineering in China, 2009, 3, 224-228.	0.6	9
189	Transition Metal-Free Incorporation of CO2. Topics in Organometallic Chemistry, 2015, , 143-169.	0.7	9
190	Selective hydrodeoxygenation of lignin \hat{l}^2 -O-4 model compounds and aromatic ketones promoted by palladium chloride with acidic CO2/MeOH system. Journal of CO2 Utilization, 2018, 24, 328-333.	6.8	9
191	Prolonging the Triplet State Lifetimes of Rhenium Complexes with Imidazoleâ€Pyridine Framework for Efficient CO ₂ Photoreduction. Chemistry - A European Journal, 2021, 27, 15536-15544.	3.3	9
192	Advances on Transition-Metal Catalyzed CO ₂ Hydrogenation. Chinese Journal of Organic Chemistry, 2021, 41, 3914.	1.3	7
193	Morphology and element doping effects: phosphorus-doped hollow polygonal g-C ₃ N ₄ rods for visible light-driven CO ₂ reduction. New Journal of Chemistry, 2022, 46, 3017-3025.	2.8	7
194	CO ₂ Chemistry at Nankai Group: Catalytic Conversion of CO ₂ into Value-Added Chemicals. ACS Symposium Series, 2010, , 77-101.	0.5	6
195	Catalytic Activation and Conversion of Carbon Dioxide into Fuels/Value-Added Chemicals Through C C Bond Formation. , 2013, , 81-147.		5
196	Synthesis of Urea Derivatives using Carbon Dioxide as Carbonylation Reagent in Ionic Liquids. Current Organocatalysis, 2017, 4, .	0.5	5
197	Highly Robust Rhenium(I) Bipyridyl Complexes Containing Dipyrrometheneâ€BF2 Chromophores for Visible Lightâ€Driven CO2 Reduction. ChemSusChem, 2022, , .	6.8	5
198	Transition Metal-Promoted CO ₂ Conversion under Mild Reaction Conditions. ACS Symposium Series, 2015, , 47-70.	0.5	4

#	Article	IF	Citations
199	Sodium Acetate-promoted Oxa-Michael-Aldol [3+2] Annulation Reactions: Facile Access to the Fused Heterocycle. Current Catalysis, 2018, 7, 60-64.	0.5	4
200	Copperâ€Catalyzed and Protonâ€Directed Selective Hydroxymethylation of Alkynes with CO ₂ . Angewandte Chemie, 2021, 133, 4030-4034.	2.0	4
201	The synergistic copper/ppm Pd-catalyzed hydrocarboxylation of alkynes with formic acid as a CO surrogate as well as a hydrogen source: an alternative indirect utilization of CO ₂ . Green Chemistry, 2021, 23, 8089-8095.	9.0	4
202	Palladium-catalyzed carboxylative cyclization of propargylic amines with aryl iodides, CO ₂ and CO under ambient pressure. Chemical Communications, 2022, 58, 6332-6335.	4.1	4
203	Industrial Production of Dimethyl Carbonate from CO2 in China. , 2016, , 387-411.		3
204	Oligomeric ricinoleic acid preparation promoted by an efficient and recoverable BrÃ,nsted acidic ionic liquid. Beilstein Journal of Organic Chemistry, 2020, 16, 351-361.	2.2	3
205	Visible light-driven carbamoyloxylation of the α-C(sp ³)–H bond of arylacetones <i>via</i> radical-initiated hydrogen atom transfer. Chemical Communications, 2022, 58, 5845-5848.	4.1	3
206	Synthesis of Dimethyl Carbonate via Transesterification of Ethylene Carbonate and Methanol using Recyclable Li/NaY Zeolite. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
207	CO2 Capture with PEG. Springer Briefs in Molecular Science, 2012, , 41-53.	0.1	2
208	Heterocyclic Synthesis Through C-N Bond Formation with Carbon Dioxide. , 2016, , 435-453.		2
209	Atom Economy., 2018, , 1-21.		2
210	Heterogeneous esterification of ricinoleic acid with polyol for the synthesis of polyol ricinoleates as biomassâ€based lubricant base oil. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 91-99.	1.9	2
211	Reduction of Carbon Dioxide to Energy-Rich Products. ACS Symposium Series, 2011, , 143-174.	0.5	1
212	CO2 Capture, Activation, and Subsequent Conversion with PEG. Springer Briefs in Molecular Science, 2012, , 71-76.	0.1	1
213	Polyethylene glycol radical-initiated aerobic propargylic oxidation in dense carbon dioxide. Journal of Energy Chemistry, 2013, 22, 363-367.	12.9	1
214	Front Cover Picture: Robust Silver(I) Catalyst for the Carboxylative Cyclization of Propargylic Alcohols with Carbon Dioxide under Ambient Conditions (Adv. Synth. Catal. 8/2016). Advanced Synthesis and Catalysis, 2016, 358, 1173-1173.	4.3	1
215	Preface. Current Organic Synthesis, 2019, 16, 2-2.	1.3	1
216	Water activated main element-based syngas surrogates for safe functionalization of unsaturated chemicals. Science Bulletin, 2021, 66, 865-867.	9.0	1

#	Article	IF	CITATIONS
217	Atom Economy. , 2019, , 3-22.		1
218	Functionalized-PEG as Catalysts for CO2 Conversion. Springer Briefs in Molecular Science, 2012, , 55-70.	0.1	0
219	PEG/scCO2 Biphasic Solvent System. Springer Briefs in Molecular Science, 2012, , 17-40.	0.1	O
220	Meet the Editorial Board:. Current Organic Synthesis, 2015, 12, 1-2.	1.3	0
221	Synthesis of Lactones and Other Heterocycles. Topics in Current Chemistry Collections, 2017, , 145-176.	0.5	O
222	Inside Back Cover: Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds (Chin. J. Chem. 7/2018). Chinese Journal of Chemistry, 2018, 36, 671-671.	4.9	0
223	Response to Commentary by T. Mita on Transition Metal-Catalyzed Carboxylation of Terminal Alkynes with CO2. Mini-Reviews in Organic Chemistry, 2019, 16, 409-409.	1.3	0
224	Ionic Liquid-Promoted CO2 Reductive Functionalization. , 2019, , 1-7.		0
225	Silver Chloride/Triphenylphosphine-Promoted Carboxylation of Arylboronic Esters with Carbon Dioxide at Atmospheric Pressure. Current Organic Synthesis, 2018, 14, .	1.3	0
226	Metal-Free Hydroxymethylation of Indole Derivatives with Formic Acid as an Alternative Way to Indirect Utilization of CO ₂ . Journal of Organic Chemistry, 2022, 87, 3775-3779.	3.2	0