Luigi Cattivelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5299600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	12.6	2,424
2	Characterization of polyploid wheat genomic diversity using a highâ€density 90Â000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12, 787-796.	8.3	1,828
3	A chromosome-based draft sequence of the hexaploid bread wheat (<i>Triticum aestivum</i>) genome. Science, 2014, 345, 1251788.	12.6	1,479
4	Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 2008, 105, 1-14.	5.1	1,122
5	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	12.6	781
6	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
7	Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345, 1250092.	12.6	629
8	Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51, 885-895.	21.4	576
9	Genome interplay in the grain transcriptome of hexaploid bread wheat. Science, 2014, 345, 1250091.	12.6	318
10	Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 2007, 26, 39-53.	4.1	286
11	Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 2004, 55, 399-416.	3.9	273
12	Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. European Journal of Agronomy, 1998, 9, 11-20.	4.1	245
13	Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription. Plant Science, 2008, 174, 420-431.	3.6	243
14	Tracing the ancestry of modern bread wheats. Nature Genetics, 2019, 51, 905-911.	21.4	230
15	The E3 Ubiquitin Ligase Gene Family in Plants: Regulation by Degradation. Current Genomics, 2006, 7, 509-522.	1.6	219
16	Two loci on chromosome 5H determine low-temperature tolerance in a â€~Nure' (winter) × â€~Tremois' (spring) barley map. Theoretical and Applied Genetics, 2004, 108, 670-680.	3.6	199
17	Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 2002, 48, 649-665.	3.9	190
18	Transcriptome Analysis of Cold Acclimation in Barley Albina and Xantha Mutants. Plant Physiology, 2006, 141, 257-270.	4.8	164

#	Article	IF	CITATIONS
19	Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Research, 2009, 111, 235-242.	5.1	164
20	Metabolism of Â-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Journal of Experimental Botany, 2006, 57, 3755-3766.	4.8	154
21	Comparative Transcriptome Profiling of the Early Response to Magnaporthe oryzae in Durable Resistant vs Susceptible Rice (Oryza sativa L.) Genotypes. PLoS ONE, 2012, 7, e51609.	2.5	149
22	Molecular Cloning and Characterization of Cold-Regulated Genes in Barley. Plant Physiology, 1990, 93, 1504-1510.	4.8	147
23	Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Molecular Breeding, 2012, 30, 79-92.	2.1	147
24	Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. Rice, 2014, 7, 1.	4.0	147
25	Next generation breeding. Plant Science, 2016, 242, 3-13.	3.6	139
26	Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics, 2009, 10, 279.	2.8	137
27	Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data. PLoS ONE, 2013, 8, e67280.	2.5	137
28	A Look within LHCII:  Differential Analysis of the Lhcb1â^'3 Complexes Building the Major Trimeric Antenna Complex of Higher-Plant Photosynthesis. Biochemistry, 2004, 43, 9467-9476.	2.5	134
29	Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding, 2001, 120, 389-396.	1.9	125
30	The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Molecular Genetics and Genomics, 2005, 274, 506-514.	2.1	123
31	Biotechnological Production of Vitamin B2-Enriched Bread and Pasta. Journal of Agricultural and Food Chemistry, 2011, 59, 8013-8020.	5.2	121
32	Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Research, 2010, 119, 68-77.	5.1	118
33	A high-density consensus map of A and B wheat genomes. Theoretical and Applied Genetics, 2012, 125, 1619-1638.	3.6	117
34	Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations. PLoS Genetics, 2012, 8, e1002612.	3.5	115
35	The Interaction between Cold and Light Controls the Expression of the Cold-Regulated Barley Gene cor14b and the Accumulation of the Corresponding Protein1. Plant Physiology, 1999, 119, 671-680.	4.8	113
36	Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. Journal of Cereal Science, 2009, 50, 210-218.	3.7	112

#	Article	IF	CITATIONS
37	The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny. Scientific Reports, 2016, 6, 19427.	3.3	106
38	Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. Journal of Cereal Science, 2011, 54, 255-264.	3.7	105
39	Harden the chloroplast to protect the plant. Physiologia Plantarum, 2013, 147, 55-63.	5.2	99
40	Structural and Temporal Variation in Genetic Diversity of European Spring Twoâ€Row Barley Cultivars and Association Mapping of Quantitative Traits. Plant Genome, 2013, 6, plantgenome2013.03.0007.	2.8	95
41	Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics, 2013, 14, 821.	2.8	93
42	Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. International Journal of Food Science and Technology, 2010, 45, 7-16.	2.7	88
43	Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biology, 2011, 11, 62.	3.6	88
44	Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions. PLoS ONE, 2016, 11, e0155425.	2.5	80
45	Genomeâ€Wide Association Analysis of Grain Yieldâ€Associated Traits in a Panâ€European Barley Cultivar Collection. Plant Genome, 2018, 11, 170073.	2.8	78
46	A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .	6.0	78
47	Photoperiod-H1 (Ppd-H1) Controls Leaf Size. Plant Physiology, 2016, 172, 405-415.	4.8	77
48	Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Applied Microbiology and Biotechnology, 2016, 100, 4595-4605.	3.6	76
49	Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Molecular Genetics and Genomics, 2009, 282, 141-152.	2.1	70
50	Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L.) collection. PLoS ONE, 2017, 12, e0189265.	2.5	70
51	The sexual differentiation of Cannabis sativa L.: A morphological and molecular study. Euphytica, 2004, 140, 95-106.	1.2	69
52	Photosynthetic Antenna Size in Higher Plants Is Controlled by the Plastoquinone Redox State at the Post-transcriptional Rather than Transcriptional Level. Journal of Biological Chemistry, 2007, 282, 29457-29469.	3.4	69
53	Metabolic profiling and analysis of volatile composition of durum wheat semolina and pasta. Journal of Cereal Science, 2009, 49, 301-309.	3.7	67
54	Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Functional and Integrative Genomics, 2011, 11, 307-325.	3.5	65

#	Article	IF	CITATIONS
55	Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. Journal of Cereal Science, 2013, 57, 183-192.	3.7	63
56	cor Gene Expression in Barley Mutants Affected in Chloroplast Development and Photosynthetic Electron Transport. Plant Physiology, 2003, 131, 793-802.	4.8	62
57	The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta, 1995, 196, 458-63.	3.2	61
58	Flavonoids and Melanins: A Common Strategy across Two Kingdoms. International Journal of Biological Sciences, 2014, 10, 1159-1170.	6.4	61
59	Metabolomics and Food Processing: From Semolina to Pasta. Journal of Agricultural and Food Chemistry, 2011, 59, 9366-9377.	5.2	60
60	Ethyleneâ€responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). Journal of Experimental Botany, 2002, 53, 429-437.	4.8	59
61	Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping. Frontiers in Plant Science, 2015, 6, 1033.	3.6	59
62	A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Molecular Biology, 1999, 40, 945-957.	3.9	58
63	Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta, 2005, 221, 705-715.	3.2	58
64	A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.). BMC Genomics, 2010, 11, 595.	2.8	57
65	First Survey of the Wheat Chromosome 5A Composition through a Next Generation Sequencing Approach. PLoS ONE, 2011, 6, e26421.	2.5	57
66	Studies for assessing the influence of hardening on cold tolerance of barley genotypes. Euphytica, 1994, 75, 131-138.	1.2	55
67	Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Science, 2004, 167, 1359-1365.	3.6	55
68	Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 2009, 119, 1335-1348.	3.6	54
69	Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Functional and Integrative Genomics, 2011, 11, 551-563.	3.5	54
70	Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Molecular Breeding, 2014, 33, 249-265.	2.1	52
71	Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologia Plantarum, 1995, 94, 87-93.	5.2	50
72	Characterization of two barley genes that respond rapidly to dehydration stress. Plant Science, 1995, 105, 71-80.	3.6	50

#	Article	IF	CITATIONS
73	Exome sequences and multiâ€environment field trials elucidate the genetic basis of adaptation in barley. Plant Journal, 2019, 99, 1172-1191.	5.7	50
74	The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. Journal of Applied Genetics, 2012, 53, 133-143.	1.9	48
75	High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Molecular Biology, 1999, 41, 233-243.	3.9	47
76	Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. Plant Molecular Biology, 1998, 38, 1061-1069.	3.9	46
77	Characterization of wheat DArT markers: genetic and functional features. Molecular Genetics and Genomics, 2012, 287, 741-753.	2.1	46
78	Comparative Transcriptome Profiles of Near-Isogenic Hexaploid Wheat Lines Differing for Effective Alleles at the 2DL FHB Resistance QTL. Frontiers in Plant Science, 2018, 9, 37.	3.6	46
79	Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biology, 2010, 10, 263.	3.6	45
80	Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Scientific Reports, 2018, 8, 10612.	3.3	45
81	microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency. Functional and Integrative Genomics, 2017, 17, 293-309.	3.5	44
82	The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. Frontiers in Plant Science, 2020, 11, 569905.	3.6	44
83	Transcriptome Analysis of the Melon-Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants. Frontiers in Plant Science, 2017, 8, 362.	3.6	43
84	Agronomic and qualitative traits of T. turgidum ssp. dicoccum genotypes cultivated in Italy. Euphytica, 2006, 150, 195-205.	1.2	42
85	Diversity in the Response to Low Temperature in Representative Barley Genotypes Cultivated in Europe. Crop Science, 2011, 51, 2759-2779.	1.8	42
86	Genetic analysis of durable resistance against leaf rust in durum wheat. Molecular Breeding, 2009, 24, 25-39.	2.1	41
87	Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics, 2013, 14, 540.	2.8	41
88	De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici. BMC Genomics, 2014, 15, 313.	2.8	39
89	Geographical origin of durum wheat studied by ¹ Hâ€NMR profiling. Magnetic Resonance in Chemistry, 2011, 49, 1-5.	1.9	38
90	Genome-Wide Analysis of japonica Rice Performance under Limited Water and Permanent Flooding Conditions. Frontiers in Plant Science, 2017, 8, 1862.	3.6	38

#	Article	IF	CITATIONS
91	Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress. BMC Genomics, 2014, 15, 125.	2.8	37
92	Genetic analysis of root morphological traits in wheat. Molecular Genetics and Genomics, 2015, 290, 785-806.	2.1	37
93	Cold-induced mRNAs accumulate with different kinetics in barley coleoptiles. Planta, 1989, 178, 184-188.	3.2	36
94	Durum wheat genes up-regulated in the early phases of cold stress are modulated by drought in a developmental and genotype dependent manner. Plant Science, 2007, 172, 1005-1016.	3.6	36
95	Plant Inner Membrane Anion Channel (PIMAC) Function in Plant Mitochondria. Plant and Cell Physiology, 2008, 49, 1039-1055.	3.1	35
96	Emerging Knowledge from Genome Sequencing of Crop Species. Molecular Biotechnology, 2012, 50, 250-266.	2.4	35
97	Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy. Genome Announcements, 2014, 2, .	0.8	35
98	Highâ€resolution mapping of the pericentromeric region on wheat chromosome arm 5 <scp>AS</scp> harbouring the Fusarium head blight resistance <scp>QTL</scp> <i>Qfhs.ifaâ€5A</i> . Plant Biotechnology Journal, 2018, 16, 1046-1056.	8.3	35
99	Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologia Plantarum, 1995, 94, 87-93.	5.2	34
100	Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2001, 102, 1286-1291.	3.6	34
101	Different mechanisms control lipoxygenase activity in durum wheat kernels. Journal of Cereal Science, 2010, 52, 121-128.	3.7	34
102	What Makes Bread and Durum Wheat Different?. Trends in Plant Science, 2021, 26, 677-684.	8.8	34
103	Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Molecular Breeding, 2014, 34, 1659-1675.	2.1	33
104	Unambiguous evidence of old soil carbon in grass biosilica particles. Biogeosciences, 2016, 13, 1269-1286.	3.3	33
105	Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics, 2018, 19, 585.	2.8	33
106	Title is missing!. Euphytica, 1999, 106, 149-157.	1.2	32
107	Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.). Tree Genetics and Genomes, 2015, 11, 1.	1.6	31
108	Early transcriptional changes in Beta vulgaris in response to low temperature. Planta, 2015, 242, 187-201.	3.2	31

#	Article	IF	CITATIONS
109	A first molecular investigation of monumental olive trees in Apulia region. Scientia Horticulturae, 2013, 162, 204-212.	3.6	30
110	GWAS for Starch-Related Parameters in Japonica Rice (Oryza sativa L.). Plants, 2019, 8, 292.	3.5	30
111	Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. BMC Genomics, 2020, 21, 468.	2.8	30
112	Secretory Phospholipases A2 in Durum Wheat (Triticum durum Desf.): Gene Expression, Enzymatic Activity, and Relation to Drought Stress Adaptation. International Journal of Molecular Sciences, 2013, 14, 5146-5169.	4.1	29
113	Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chemistry, 2018, 242, 53-61.	8.2	29
114	Genome Sequence of Oenococcus oeni OM27, the First Fully Assembled Genome of a Strain Isolated from an Italian Wine. Genome Announcements, 2014, 2, .	0.8	28
115	Effects of growth stage and hardening conditions on the association between frost resistance and the expression of the cold-induced protein COR14b in barley. Environmental and Experimental Botany, 2008, 62, 93-100.	4.2	27
116	A micro-method for the determination of Yellow Pigment Content in durum wheat. Journal of Cereal Science, 2010, 52, 106-110.	3.7	27
117	Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration À Â. Plant Physiology, 2012, 158, 777-789.	4.8	27
118	Molecular mapping of stomatalâ€conductanceâ€related traits inÂdurum wheat (<i>Triticum turgidum</i>) Tj ET(Qq0 0 0 r ₂	gBT_/Overlock 27
119	Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. Journal of Experimental Botany, 2020, 71, 5990-6003.	4.8	27
120	Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique. PLoS ONE, 2017, 12, e0173313.	2.5	25
121	Accumulation and characterization of the 75 kDa protein induced by low temperature in barley. Plant Science, 1994, 97, 39-46.	3.6	24
122	Durum wheat salt tolerance in relation to physiological, yield and quality characters. Cereal Research Communications, 2011, 39, 525-534.	1.6	24
123	Activation of genes in barley roots in response to infection by two Drechslera graminea isolates. Physiological and Molecular Plant Pathology, 1994, 44, 207-215.	2.5	22
124	Diversity in abiotic stress tolerances. Developments in Plant Genetics and Breeding, 2003, 7, 179-199.	0.6	22
125	Grapevine comparative early transcriptomic profiling suggests that Flavescence dorée phytoplasma represses plant responses induced by vector feeding in susceptible varieties. BMC Genomics, 2019, 20, 526.	2.8	22
126	Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain. Food Microbiology, 2017, 66, 110-116.	4.2	22

#	Article	IF	CITATIONS
127	Genetic analysis of the expression of the cold-regulated gene cor14b: a way toward the identification of components of the cold response signal transduction in Triticeae. Canadian Journal of Botany, 2003, 81, 1162-1167.	1.1	21
128	The nuclear–cytoplasmic interaction controls carotenoid content in wheat. Euphytica, 2008, 159, 325-331.	1.2	21
129	Allelic variation at Fr-H1/Vrn-H1 and Fr-H2 loci is the main determinant of frost tolerance in spring barley. Environmental and Experimental Botany, 2014, 106, 148-155.	4.2	21
130	Molecular adaptation of barley to cold and drought conditions. Euphytica, 1996, 92, 215-219.	1.2	20
131	The transcripts of several components of the protein synthesis machinery are cold-regulated in a chloroplast-dependent manner in barley and wheat. Journal of Plant Physiology, 2001, 158, 1541-1546.	3.5	20
132	Cytoplasmic genome substitution in wheat affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations. BMC Genomics, 2013, 14, 868.	2.8	20
133	Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology and Biochemistry, 2015, 86, 24-33.	5.8	20
134	Genomic Regions From an Iranian Landrace Increase Kernel Size in Durum Wheat. Frontiers in Plant Science, 2019, 10, 448.	3.6	20
135	Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics, 2015, 16, 1091.	2.8	18
136	Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism. Plant Molecular Biology, 2009, 71, 173-191.	3.9	17
137	Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust. BMC Genomics, 2012, 13, 642.	2.8	17
138	Draft Genome Sequence of Lactobacillus plantarum Lp90 Isolated from Wine. Genome Announcements, 2015, 3, .	0.8	17
139	Berry Quality of Grapevine under Water Stress as Affected by Rootstock–Scion Interactions through Gene Expression Regulation. Agronomy, 2020, 10, 680.	3.0	17
140	Rootstock and soil induce transcriptome modulation of phenylpropanoid pathway in grape leaves. Journal of Plant Interactions, 2013, 8, 334-349.	2.1	16
141	Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain. Genome Announcements, 2014, 2, .	0.8	16
142	A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genetics, 2017, 18, 79.	2.7	16
143	Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. Plants, 2018, 7, 35.	3.5	16

A Survey of MicroRNA Length Variants Contributing to miRNome Complexity in Peach (Prunus Persica) Tj ETQq0 0 0 grgBT /Overlock 10 T

#	Article	IF	CITATIONS
145	On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs. Biology Direct, 2012, 7, 15.	4.6	15
146	A major QTL for resistance to soil-borne cereal mosaic virus derived from an old Italian durum wheat cultivar. Journal of Plant Interactions, 2012, 7, 290-300.	2.1	14
147	Rootstock–scion interaction affecting citrus response to <scp>CTV</scp> infection: a proteomic view. Physiologia Plantarum, 2016, 156, 444-467.	5.2	14
148	Genome wide association studies for japonica rice resistance to blast in field and controlled conditions. Rice, 2020, 13, 71.	4.0	14
149	Evaluation of Genotype Diversity in Oat Germplasm and Definition of Ideotypes Adapted to the Mediterranean Environment. International Journal of Agronomy, 2011, 2011, 1-8.	1.2	13
150	A ω-secalin contained decamer shows a celiac disease prevention activity. Journal of Cereal Science, 2012, 55, 234-242.	3.7	13
151	A new genetic and deletion map of wheat chromosome 5A to detect candidate genes for quantitative traits. Molecular Breeding, 2014, 34, 1599-1611.	2.1	13
152	Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci. Molecular Genetics and Genomics, 2016, 291, 17-32.	2.1	13
153	QTLs for Woolly Poplar Aphid (Phloeomyzus passerinii L.) Resistance Detected in an Inter-Specific Populus deltoides x P. nigra Mapping Population. PLoS ONE, 2016, 11, e0152569.	2.5	13
154	Poplar acclimation to cold during in vitro conservation at low non-freezing temperature: metabolic and proteic changes. Journal of Plant Physiology, 2000, 157, 117-123.	3.5	12
155	An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine. Plant Cell, Tissue and Organ Culture, 2013, 114, 49-60.	2.3	12
156	Genetic dissection of heading date and yield under Mediterranean dry climate in barley (Hordeum) Tj ETQq0 0 0	rgBT/Ove 1.2	rlock 10 Tf 50
157	Unraveling diversity in wheat competitive ability traits can improve integrated weed management. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	12
158	The Yd2 gene and enhanced resistance to barley yellow dwarf virus (BYDV) in winter barley. Plant Breeding, 1995, 114, 417-420.	1.9	11
159	Title is missing!. Euphytica, 2001, 119, 173-177.	1.2	11
160	Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach. Plant Genome, 2015, 8, eplantgenome2015.03.0011.	2.8	11
161	Genetic dissection of winter barley seedling response to salt and osmotic stress. Molecular Breeding, 2019, 39, 1.	2.1	11
162	Cold Hardening In Triticale In Comparison With Rye And Wheat. Cereal Research Communications, 1997, 25, 947-954.	1.6	10

#	Article	IF	CITATIONS
163	More cold tolerant plants for a warmer world. Plant Science, 2011, 180, 1-2.	3.6	10
164	Improvement of Drought Resistance in Crops: From Conventional Breeding to Genomic Selection. , 2012, , 225-259.		10
165	Conservation of AtTZF1, AtTZF2, and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species. Frontiers in Plant Science, 2015, 6, 394.	3.6	10
166	Increasing atmospheric CO 2 modifies durum wheat grain quality and pasta cooking quality. Journal of Cereal Science, 2016, 69, 245-251.	3.7	10
167	Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health?. Antioxidants, 2022, 11, 794.	5.1	10
168	RFLP analysis of highly polymorphic loci in barley. Theoretical and Applied Genetics, 1993, 85, 926-930.	3.6	9
169	Expressed sequence tags from cold-acclimatized barley can identify novel plant genes. Plant Breeding, 2001, 120, 497-502.	1.9	9
170	Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (<i>Triticum aestivum</i>). Genome, 2012, 55, 417-427.	2.0	9
171	Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus. Theoretical and Applied Genetics, 2013, 126, 1575-1586.	3.6	9
172	Transcriptomics, chromosome engineering and mapping identify a restorer-of-fertility region in the CMS wheat system msH1. Theoretical and Applied Genetics, 2020, 133, 283-295.	3.6	9
173	Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. Theoretical and Applied Genetics, 2021, , 1.	3.6	9
174	Molecular adaptation of barley to cold and drought conditions. Developments in Plant Breeding, 1997, , 237-241.	0.2	8
175	The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting, frost tolerance is regulated by different mRNA expression and protein turnover. Plant Science, 2000, 156, 47-54.	3.6	8
176	Capturing Wheat Phenotypes at the Genome Level. Frontiers in Plant Science, 0, 13, .	3.6	8
177	Effects of breeding activity on durum wheat traits breed in Italy during the 20th century. Italian Journal of Agronomy, 2007, 2, 451.	1.0	7
178	Genetic progress of oats in Italy. Euphytica, 2008, 164, 679-687.	1.2	7
179	Genetic diversity of gluten proteins in <i>T. turgidum</i> L. Cereal Research Communications, 2011, 39, 405-414.	1.6	7
180	Resistance of European Spring 2-Row Barley Cultivars to Pyrenophora graminea and Detection of Associated Loci. Agronomy, 2021, 11, 374.	3.0	7

#	Article	IF	CITATIONS
181	Characterization of a hypovirulent insertional mutant ofPyrenophora gramineaand analysis of the barley defence response after inoculation. Plant Pathology, 1998, 47, 657-664.	2.4	6
182	The up-regulation of elongation factors in the barley leaf and the down-regulation of nucleosome assembly genes in the crown are both associated with the expression of frost tolerance. Functional and Integrative Genomics, 2014, 14, 493-506.	3.5	6
183	Draft Genome Sequence of Three Antibiotic-Resistant Leuconostoc mesenteroides Strains of Dairy Origin. Genome Announcements, 2015, 3, .	0.8	6
184	Segmental duplications are hot spots of copy number variants affecting barley gene content. Plant Journal, 2020, 103, 1073-1088.	5.7	6
185	Development and characterization of ESTâ€derived SSRs from a â€~totipotent' cDNA library of durum wheat. Plant Breeding, 2010, 129, 715-717.	1.9	5
186	Multiallelic and multilocus simple sequence repeats (SSRs) to assess the genetic diversity of a Salix spp. germplasm collection. Journal of Forestry Research, 2021, 32, 263-271.	3.6	5
187	Genomic Prediction of Grain Yield in a Barley MAGIC Population Modeling Genotype per Environment Interaction. Frontiers in Plant Science, 2021, 12, 664148.	3.6	5
188	Integrated Views in Plant Breeding. , 2009, , 327-354.		4
189	Characterization of the Resistance to Powdery Mildew and Leaf Rust Carried by the Bread Wheat Cultivar Victo. International Journal of Molecular Sciences, 2021, 22, 3109.	4.1	4
190	Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. Plants, 2021, 10, 1828.	3.5	4
191	Molecular advances in rootstock-scion interaction in grapevine. Acta Horticulturae, 2016, , 155-160.	0.2	3
192	Fitness Cost Shapes Differential Evolutionary Dynamics of Disease Resistance Genes in Cultivated and Wild Plants. Molecular Plant, 2020, 13, 1352-1354.	8.3	3
193	Integrated views in plant breeding: from the perspective of biotechnology. , 2015, , 467-486.		2
194	Genetic Characterization of a Fusarium Head Blight Resistance QTL from Triticum turgidum ssp. dicoccoides. Plant Molecular Biology Reporter, 0, , 1.	1.8	2
195	Involvement of Glutathione and Carbohydrate Biosynthesis Moreover COR14B Gene Expression in Wheat Cold Acclimation. , 2002, , 139-159.		2
196	Expression of Cold-Regulated (cor) Genes in Barley. , 2002, , 121-137.		1
197	Cloning and characterization of barley long chain acyl-CoA oxidase and its possible regulation by glucose. Physiologia Plantarum, 2003, 117, 22-32.	5.2	1
198	The E3 ubiquitin ligase WVIP2 highlights the versatility of protein ubiquitination. Plant Signaling and Behavior, 2012, 7, 1155-1157.	2.4	1

#	Article	IF	CITATIONS
199	Genetic Diversity for Barley Adaptation to Stressful Environments. , 2021, , 153-191.		1
200	Conducting for in. Methods in Molecular Biology, 2020, 2156, 43-52.	0.9	1
201	Physiological and Molecular Response of Barley to Cold and Drought Stress. , 1996, , 49-54.		1
202	Post-transcriptional and Post-translational Modifications Controlling Cold Response. , 2013, , 119-129.		1
203	Plant breeding highlights master genes in major regulatory pathways. Molecular Plant, 2022, 15, 391-392.	8.3	1
204	Breeding and physiological strategies for improving drought resistance in barley. Bulletin De La Société Botanique De France Actualités Botaniques, 1990, 137, 61-66.	0.0	0
205	Physiological and molecular studies of heat and drought tolerance in barley. Bulletin De La Société Botanique De France Actualités Botaniques, 1990, 137, 73-80.	0.0	0
206	Stress Amblentali. Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 931-974.	0.0	0
207	Ab initio GO-based mining for non-tandem-duplicated functional clusters in three model plant diploid genomes. PLoS ONE, 2020, 15, e0234782.	2.5	0
208	Editorial: Proceedings of FSTP3 Congress–A Sustainable Durum Wheat Chain for Food Security and Healthy Lives. Frontiers in Plant Science, 2021, 12, 675510.	3.6	0
209	Conducting Field Trials for Frost Tolerance Breeding in Cereals. Methods in Molecular Biology, 2014, 1166, 25-33.	0.9	0
210	High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings. G3: Genes, Genomes, Genetics, 2022, , .	1.8	0