Louis Vermeulen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5299288/publications.pdf

Version: 2024-02-01

47006 25787 16,808 118 47 108 citations h-index g-index papers 126 126 126 22423 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clinical Value of Consensus Molecular Subtypes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Journal of the National Cancer Institute, 2022, 114, 503-516.	6.3	70
2	Intestinal organoid co-culture protocol to study cell competition in vitro. STAR Protocols, 2022, 3, 101050.	1.2	4
3	Primary tumour immune response and lymph node yields in colon cancer. British Journal of Cancer, 2022, 126, 1178-1185.	6.4	24
4	Intestinal stem cell dynamics in homeostasis and cancer. Trends in Cancer, 2022, 8, 416-425.	7.4	9
5	Development of a miRNAâ€based classifier for detection of colorectal cancer molecular subtypes. Molecular Oncology, 2022, 16, 2693-2709.	4.6	6
6	Serum-based measurements of stromal activation through ADAM12 associate with poor prognosis in colorectal cancer. BMC Cancer, 2022, 22, 394.	2.6	7
7	Copyâ€number heterogeneity as highâ€risk feature of stage <scp>ll</scp> colon cancer ^{â€} . Journal of Pathology, 2022, , .	4.5	1
8	The Effect of Dynamic, In Vivo-like Oxaliplatin on HCT116 Spheroids in a Cancer-on-Chip Model Is Representative of the Response in Xenografts. Micromachines, 2022, 13, 739.	2.9	2
9	Quantitative models for the inference of intratumor heterogeneity. Computational and Systems Oncology, 2022, 2, .	1.5	1
10	Confusion on Cell Fusion. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 304-306.	4.5	0
11	Rebuttal to: Digesting the Importance of Cell Fusion in the Intestine. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 303.	4.5	2
12	Systems biology and molecular characterization of subtypes to guide targeted therapies in gastric cancer., 2021,, 259-288.		0
13	AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition. Cancers, 2021, 13, 801.	3.7	16
14	Mimicking and surpassing the xenograft model with cancer-on-chip technology. EBioMedicine, 2021, 66, 103303.	6.1	9
15	Predictors of 30-Day Mortality Among Dutch Patients Undergoing Colorectal Cancer Surgery, 2011-2016. JAMA Network Open, 2021, 4, e217737.	5.9	37
16	Chromosomal copy number heterogeneity predicts survival rates across cancers. Nature Communications, 2021, 12, 3188.	12.8	43
17	Pre-Operative Decitabine in Colon Cancer Patients: Analyses on WNT Target Methylation and Expression. Cancers, 2021, 13, 2357.	3.7	2
18	Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers, 2021, 13, 3295.	3.7	7

#	Article	IF	CITATIONS
19	Early Cost-effectiveness Analysis of Risk-Based Selection Strategies for Adjuvant Treatment in Stage II Colon Cancer: The Potential Value of Prognostic Molecular Markers. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1726-1734.	2.5	0
20	Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature, 2021, 594, 436-441.	27.8	108
21	Molecular subtype-specific efficacy of anti-EGFR therapy in colorectal cancer is dependent on the chemotherapy backbone. British Journal of Cancer, 2021, 125, 1080-1088.	6.4	10
22	High-Fat Diet Impacts on Tumor Development in the Gut. Trends in Cancer, 2021, 7, 664-665.	7.4	8
23	Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. ELife, 2021, 10, .	6.0	12
24	Predicting survival of cancer patients by chromosomal copy number heterogeneity. Molecular and Cellular Oncology, 2021, 8, 1949956.	0.7	1
25	The recurring features of molecular subtypes in distinct gastrointestinal malignancies—A systematic review. Critical Reviews in Oncology/Hematology, 2021, 164, 103428.	4.4	6
26	Continuous clonal labeling reveals uniform progenitor potential in the adult exocrine pancreas. Cell Stem Cell, 2021, 28, 2009-2019.e4.	11.1	11
27	Exploiting KRAS-mediated metabolic reprogramming as a therapeutic target. Nature Genetics, 2021, 53, 9-10.	21.4	6
28	Marker-free lineage tracing reveals an environment-instructed clonogenic hierarchy in pancreatic cancer. Cell Reports, 2021, 37, 109852.	6.4	8
29	474P Prognostic and predictive role of Consensus Molecular Subtypes (CMS) determined by immunohistochemistry in metastatic colorectal cancer (mCRC). Annals of Oncology, 2020, 31, S442-S443.	1.2	1
30	Interconnectivity between molecular subtypes and tumor stage in colorectal cancer. BMC Cancer, 2020, 20, 850.	2.6	14
31	Emerging Role and Therapeutic Potential of IncRNAs in Colorectal Cancer. Cancers, 2020, 12, 3843.	3.7	29
32	Intestinal region-specific Wnt signalling profiles reveal interrelation between cell identity and oncogenic pathway activity in cancer development. Cancer Cell International, 2020, 20, 578.	4.1	8
33	Histological phenotypic subtypes predict recurrence risk and response to adjuvant chemotherapy in patients with stage III colorectal cancer. Journal of Pathology: Clinical Research, 2020, 6, 283-296.	3.0	17
34	A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities. Nature Communications, 2020, 11, 2935.	12.8	57
35	A mouse model for peritoneal metastases of colorectal origin recapitulates patient heterogeneity. Laboratory Investigation, 2020, 100, 1465-1474.	3.7	17
36	Associations of non-pedunculated T1 colorectal adenocarcinoma outcome with consensus molecular subtypes, immunoscore, and microsatellite status: a multicenter case-cohort study. Modern Pathology, 2020, 33, 2626-2636.	5.5	17

#	Article	IF	CITATIONS
37	Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Scientific Reports, 2020, 10, 337.	3.3	46
38	CD31-positive microvessel density within adenomas of Lynch Syndrome patients is similar compared to adenomas of non-Lynch patients. Endoscopy International Open, 2019, 07, E701-E707.	1.8	3
39	DeepCC: a novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis, 2019, 8, 44.	4.9	138
40	A marker-independent lineage-tracing system to quantify clonal dynamics and stem cell functionality in cancer tissue. Nature Protocols, 2019, 14, 2648-2671.	12.0	4
41	A Cancer Stem Cell Perspective on Minimal Residual Disease in Solid Malignancies. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 31-49.	0.1	1
42	Spatiotemporal regulation of clonogenicity in colorectal cancer xenografts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6140-6145.	7.1	60
43	Prognostic value of low CDX2 expression in colorectal cancers with a high stromal content – a short report. Cellular Oncology (Dordrecht), 2019, 42, 397-403.	4.4	3
44	Stem cells in homeostasis and cancer of the gut. Molecular Cancer, 2019, 18, 66.	19.2	44
45	The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation, 2019, 108, 17-23.	1.9	23
46	Cancer stem cells: here, there, and everywhere. Molecular and Cellular Oncology, 2019, 6, 1540235.	0.7	1
47	Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. Oncogene, 2019, 38, 2305-2319.	5.9	41
48	Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models. Cell Death and Differentiation, 2018, 25, 616-633.	11.2	137
49	Turning Cold Tumors Hot by Blocking TGF-β. Trends in Cancer, 2018, 4, 335-337.	7.4	26
50	Classification of Colorectal Cancer in Molecular Subtypes by Immunohistochemistry. Methods in Molecular Biology, 2018, 1765, 179-191.	0.9	31
51	What Will We Expect From Novel Therapies to Esophageal and Gastric Malignancies?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 249-261.	3.8	3
52	Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: a study of 1320 colorectal cancers with Consensus Molecular Subgroup (CMS) data. British Journal of Cancer, 2018, 119, 1244-1251.	6.4	57
53	Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nature Cell Biology, 2018, 20, 1193-1202.	10.3	138
54	Itraconazole targets cell cycle heterogeneity in colorectal cancer. Journal of Experimental Medicine, 2018, 215, 1891-1912.	8.5	54

#	Article	IF	Citations
55	Phenotypic subtypes as a novel validated prognostic classification system for patients with colorectal cancer Journal of Clinical Oncology, 2018, 36, 625-625.	1.6	O
56	Balancing signals in the intestinal niche. EMBO Journal, 2017, 36, 389-391.	7.8	8
57	Molecular subtypes in cancers of the gastrointestinal tract. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 333-342.	17.8	99
58	Esophageal Adenocarcinoma Cells and Xenograft Tumors Exposed to Erb-b2 Receptor Tyrosine Kinase 2 and 3 Inhibitors Activate Transforming Growth Factor Beta Signaling, Which Induces Epithelial to Mesenchymal Transition. Gastroenterology, 2017, 153, 63-76.e14.	1.3	25
59	From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nature Reviews Clinical Oncology, 2017, 14, 235-246.	27.6	466
60	Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature Reviews Cancer, 2017, 17, 79-92.	28.4	686
61	Neoadjuvant chemotherapy affects molecular classification of colorectal tumors. Oncogenesis, 2017, 6, e357-e357.	4.9	35
62	Stem Cells: All that Is Solid Melts into Air. Cell Stem Cell, 2017, 21, 5-7.	11.1	3
63	Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. Clinical Cancer Research, 2017, 23, 387-398.	7.0	128
64	Immunogenomic Classification of Colorectal Cancer and Therapeutic Implications. International Journal of Molecular Sciences, 2017, 18, 2229.	4.1	105
65	Polycomb complex PRC1 as gatekeeper of intestinal stem cell identity. Stem Cell Investigation, 2016, 3, 22-22.	3.0	3
66	Wnt Signaling in Cancer Stem Cell Biology. Cancers, 2016, 8, 60.	3.7	180
67	The Use of Targeted Therapies for Precision Medicine in Oncology. Clinical Chemistry, 2016, 62, 1556-1564.	3.2	10
68	$TGF\hat{l}^2$ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Molecular Medicine, 2016, 8, 745-760.	6.9	119
69	A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene, 2016, 35, 6026-6037.	5.9	49
70	Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. The Lancet Gastroenterology and Hepatology, 2016, 1, 207-216.	8.1	227
71	Loss of KCNQ1 expression in stage II and stage III colon cancer is a strong prognostic factor for disease recurrence. British Journal of Cancer, 2016, 115, 1565-1574.	6.4	34
72	Bcl-2 is a critical mediator of intestinal transformation. Nature Communications, 2016, 7, 10916.	12.8	55

#	Article	IF	Citations
73	Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene, 2016, 35, 5263-5271.	5.9	87
74	CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene, 2016, 35, 4191-4199.	5.9	129
75	Bidirectional interconversion of stem and non-stem cancer cell populations: A reassessment of theoretical models for tumor heterogeneity. Molecular and Cellular Oncology, 2016, 3, e1098791.	0.7	19
76	Turning off the BCL-2 switch to prevent intestinal tumorigenesis. Oncotarget, 2016, 7, 28763-28764.	1.8	2
77	Cancer stem cells don't waste their time cleaning—low proteasome activity, a marker for cancer stem cell function. Annals of Translational Medicine, 2016, 4, 519-519.	1.7	15
78	Colorectal Cancer Heterogeneity and Targeted Therapy: A Case for Molecular Disease Subtypes. Cancer Research, 2015, 75, 245-249.	0.9	163
79	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	2.8	239
80	The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis, 2015, 36, S160-S183.	2.8	97
81	Serrated neoplasia—role in colorectal carcinogenesis and clinical implications. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 401-409.	17.8	149
82	ER-Stress-Induced Differentiation Sensitizes Colon Cancer Stem Cells to Chemotherapy. Cell Reports, 2015, 13, 489-494.	6.4	83
83	The consensus molecular subtypes of colorectal cancer. Nature Medicine, 2015, 21, 1350-1356.	30.7	3,596
84	Abstract 603: Consensus molecular subtyping through a community of experts advances unsupervised gene expression-based disease classification and facilitates clinical translation., 2015,,.		0
85	Abstract LB-108: Automated immunohistochemistry-based identification of molecular subtypes in colorectal cancer. , $2015, , .$		0
86	Abstract 5177: Heterogeneity of pancreatic ductal adenocarcinoma visualized., 2015,,.		0
87	Abstract 5273: Role of methylation of Wnt target genes in tumorigenesis and effect of re-expression with demethylating agent decitabine in colon cancer. , 2015, , .		0
88	Reconciliation of classification systems defining molecular subtypes of colorectal cancer. Cell Cycle, 2014, 13, 353-357.	2.6	69
89	Stem cell competition: how speeding mutants beat the rest. EMBO Journal, 2014, 33, 2277-2278.	7.8	6
90	Stem cell dynamics in homeostasis and cancer of the intestine. Nature Reviews Cancer, 2014, 14, 468-480.	28.4	206

#	Article	lF	Citations
91	Cancer heterogeneity—a multifaceted view. EMBO Reports, 2013, 14, 686-695.	4.5	208
92	Defining Stem Cell Dynamics in Models of Intestinal Tumor Initiation. Science, 2013, 342, 995-998.	12.6	355
93	Dissecting cancer heterogeneity – An unsupervised classification approach. International Journal of Biochemistry and Cell Biology, 2013, 45, 2574-2579.	2.8	28
94	Continuous Clonal Labeling Reveals Small Numbers of Functional Stem Cells in Intestinal Crypts and Adenomas. Cell Stem Cell, 2013, 13, 626-633.	11.1	188
95	Keeping Stem Cells in Check: A Hippo Balancing Act. Cell Stem Cell, 2013, 12, 3-5.	11.1	8
96	Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature, 2013, 495, 65-69.	27.8	653
97	Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nature Medicine, 2013, 19, 614-618.	30.7	656
98	Regulation of stem cell self-renewal and differentiation by Wnt and Notch are conserved throughout the adenoma-carcinoma sequence in the colon. Molecular Cancer, 2013, 12, 126.	19.2	50
99	CD44 Expression in Intestinal Epithelium and Colorectal Cancer Is Independent of p53 Status. PLoS ONE, 2013, 8, e72849.	2.5	23
100	Mutations in the Ras–Raf Axis Underlie the Prognostic Value of CD133 in Colorectal Cancer. Clinical Cancer Research, 2012, 18, 3132-3141.	7.0	79
101	Fusion of intestinal epithelial cells with bone marrow derived cells is dispensable for tissue homeostasis. Scientific Reports, 2012, 2, 271.	3.3	17
102	The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncology, The, 2012, 13, e83-e89.	10.7	327
103	Cancer Stem Cell Niche: The Place to Be. Cancer Research, 2011, 71, 634-639.	0.9	460
104	Targeting Wnt Signaling in Colon Cancer Stem Cells. Clinical Cancer Research, 2011, 17, 647-653.	7.0	199
105	Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature, 2011, 474, 318-326.	27.8	399
106	Methylation of Cancer-Stem-Cell-Associated Wnt Target Genes Predicts Poor Prognosis in Colorectal Cancer Patients. Cell Stem Cell, 2011, 9, 476-485.	11.1	291
107	Modeling Evolutionary Dynamics of Epigenetic Mutations in Hierarchically Organized Tumors. PLoS Computational Biology, 2011, 7, e1001132.	3.2	53
108	The AC133 Epitope, but not the CD133 Protein, Is Lost upon Cancer Stem Cell Differentiation. Cancer Research, 2010, 70, 719-729.	0.9	326

#	Article	IF	CITATIONS
109	Exploring cancer stem cell niche directed tumor growth. Cell Cycle, 2010, 9, 1472-1479.	2.6	32
110	Cancer Stem Cell Tumor Model Reveals Invasive Morphology and Increased Phenotypical Heterogeneity. Cancer Research, 2010, 70, 46-56.	0.9	180
111	Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 2010, 12, 468-476.	10.3	1,623
112	One renegade cancer stem cell?. Cell Cycle, 2009, 8, 803-808.	2.6	22
113	Cancer Stem Cells in Colorectal Cancer. , 2009, , 223-250.		1
114	Cancer stem cells – old concepts, new insights. Cell Death and Differentiation, 2008, 15, 947-958.	11.2	320
115	Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13427-13432.	7.1	654
116	Cyclooxygenase-2 Inhibition Inhibits c-Met Kinase Activity and Wnt Activity in Colon Cancer. Cancer Research, 2008, 68, 1213-1220.	0.9	130
117	Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4. Cell Stem Cell, 2007, 1, 389-402.	11.1	968
118	Kinome Analysis Reveals Nongenomic Glucocorticoid Receptor-Dependent Inhibition of Insulin Signaling. Endocrinology, 2006, 147, 3555-3562.	2.8	53