Irene Cozar-Castellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Origin of Insulin-Degrading Enzyme and Its Subcellular Localization and Secretion Mechanism: A Study in Microglial Cells. Cells, 2022, 11, 227.	4.1	4
2	Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia, 2022, 65, 1375-1389.	6.3	3
3	Effects of Fasting and Feeding on Transcriptional and Posttranscriptional Regulation of Insulin-Degrading Enzyme in Mice. Cells, 2021, 10, 2446.	4.1	10
4	miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Molecular Metabolism, 2021, 53, 101306.	6.5	4
5	Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines, 2021, 9, 86.	3.2	35
6	Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients, 2020, 12, 94.	4.1	60
7	Modulation of Glial Responses by Furanocembranolides: Leptolide Diminishes Microglial Inflammation in Vitro and Ameliorates Gliosis In Vivo in a Mouse Model of Obesity and Insulin Resistance. Marine Drugs, 2020, 18, 378.	4.6	2
8	Hepatic insulin-degrading enzyme regulates glucose and insulin homeostasis in diet-induced obese mice. Metabolism: Clinical and Experimental, 2020, 113, 154352.	3.4	25
9	Assessment of Insulin Tolerance In Vivo in Mice. Methods in Molecular Biology, 2020, 2128, 217-224.	0.9	5
10	Assessment of Insulin Tolerance Ex Vivo. Methods in Molecular Biology, 2020, 2128, 291-300.	0.9	1
11	Pancreatic β-cell-specific deletion of insulin-degrading enzyme leads to dysregulated insulin secretion and β-cell functional immaturity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E805-E819.	3.5	23
12	Manipulation of Transmembrane Transport by Synthetic K ⁺ lonophore Depsipeptides and Its Implications in Glucoseâ€Stimulated Insulin Secretion in β ells. Chemistry - A European Journal, 2019, 25, 9287-9294.	3.3	10
13	Cembranoids from Eunicea sp. enhance insulin-producing cells proliferation. Tetrahedron, 2018, 74, 2056-2062.	1.9	4
14	Chloro-Furanocembranolides from Leptogorgia sp. Improve Pancreatic Beta-Cell Proliferation. Marine Drugs, 2018, 16, 49.	4.6	6
15	Liver-specific ablation of insulin-degrading enzyme causes hepatic insulin resistance and glucose intolerance, without affecting insulin clearance in mice. Metabolism: Clinical and Experimental, 2018, 88, 1-11.	3.4	49
16	Insulin degrading enzyme is up-regulated in pancreatic β cells by insulin treatment. Histology and Histopathology, 2018, 33, 1167-1180.	0.7	15
17	Leptolide Improves Insulin Resistance in Diet-Induced Obese Mice. Marine Drugs, 2017, 15, 289.	4.6	4
18	Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on <i>β</i> -Cell Functionality. International Journal of Endocrinology, 2015, 2015, 1-11.	1.5	8

IRENE COZAR-CASTELLANO

#	Article	IF	CITATIONS
19	Central vascular disease and exacerbated pathology in a mixed model of type 2 diabetes and Alzheimer's disease. Psychoneuroendocrinology, 2015, 62, 69-79.	2.7	57
20	Glucose and Fatty Acid Metabolism in Placental Explants From Pregnancies Complicated With Gestational Diabetes Mellitus. Reproductive Sciences, 2015, 22, 798-801.	2.5	24
21	Hepatocyte growth factor is elevated in amniotic fluid from obese women and regulates placental glucose and fatty acid metabolism. Placenta, 2015, 36, 381-388.	1.5	16
22	Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E450-E459.	3.5	5
23	Protective effects of epoxypukalide on pancreatic β-cells and glucose metabolism in STZ-induced diabetic mice. Islets, 2015, 7, e1078053.	1.8	8
24	Targeted delivery of HGF to the skeletal muscle improves glucose homeostasis in diet-induced obese mice. Journal of Physiology and Biochemistry, 2015, 71, 795-805.	3.0	12
25	Central Proliferation and Neurogenesis Is Impaired in Type 2 Diabetes and Prediabetes Animal Models. PLoS ONE, 2014, 9, e89229.	2.5	85
26	Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology, 2013, 38, 2462-2475.	2.7	118
27	High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E205-E212.	3.5	71
28	Epoxypukalide Induces Proliferation and Protects against Cytokine-Mediated Apoptosis in Primary Cultures of Pancreatic β-Cells. PLoS ONE, 2013, 8, e52862.	2.5	12
29	Increased Aβ production prompts the onset of glucose intolerance and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1373-E1380.	3.5	81
30	Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation. PLoS ONE, 2012, 7, e46484.	2.5	93
31	Low-density lipoprotein cholesterol suppresses apoptosis in human multiple myeloma cells. Annals of Hematology, 2012, 91, 83-88.	1.8	18
32	Genetic deficiency of apolipoprotein D in the mouse is associated with nonfasting hypertriglyceridemia and hyperinsulinemia. Metabolism: Clinical and Experimental, 2011, 60, 1767-1774.	3.4	18
33	Induction of Human β-Cell Proliferation and Engraftment Using a Single G1/S Regulatory Molecule, cdk6. Diabetes, 2010, 59, 1926-1936.	0.6	120
34	Survey of the Human Pancreatic β-Cell G1/S Proteome Reveals a Potential Therapeutic Role for Cdk-6 and Cyclin D1 in Enhancing Human β-Cell Replication and Function In Vivo. Diabetes, 2009, 58, 882-893.	0.6	106
35	Mutant Parathyroid Hormone-Related Protein, Devoid of the Nuclear Localization Signal, Markedly Inhibits Arterial Smooth Muscle Cell Cycle and Neointima Formation by Coordinate Up-Regulation of p15Ink4b and p27kip1. Endocrinology, 2009, 150, 1429-1439.	2.8	35
36	Lessons From the First Comprehensive Molecular Characterization of Cell Cycle Control in Rodent Insulinoma Cell Lines. Diabetes, 2008, 57, 3056-3068.	0.6	52

IRENE COZAR-CASTELLANO

#	Article	IF	CITATIONS
37	Tissue-Specific Deletion of the Retinoblastoma Protein in the Pancreatic Â-Cell Has Limited Effects on Â-Cell Replication, Mass, and Function. Diabetes, 2007, 56, 57-64.	0.6	34
38	Molecular Control of Cell Cycle Progression in the Pancreatic β-Cell. Endocrine Reviews, 2006, 27, 356-370.	20.1	189
39	Growth factors and beta cell replication. International Journal of Biochemistry and Cell Biology, 2006, 38, 931-950.	2.8	120
40	The Cell Cycle Inhibitory Protein p21cip Is Not Essential for Maintaining Â-Cell Cycle Arrest or Â-Cell Function In Vivo. Diabetes, 2006, 55, 3271-3278.	0.6	49
41	Cellular Mechanism Through Which Parathyroid Hormone–Related Protein Induces Proliferation in Arterial Smooth Muscle Cells. Circulation Research, 2006, 99, 933-942.	4.5	42
42	Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes, 2006, 55, 70-7.	0.6	53
43	Molecular engineering human hepatocytes into pancreatic beta cells for diabetes therapy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7781-7782.	7.1	9
44	Hepatocyte Growth Factor Gene Therapy for Pancreatic Islets in Diabetes: Reducing the Minimal Islet Transplant Mass Required in a Glucocorticoid-Free Rat Model of Allogeneic Portal Vein Islet Transplantation. Endocrinology, 2004, 145, 467-474.	2.8	115
45	Hepatocyte growth factor gene therapy for islet transplantation. Expert Opinion on Biological Therapy, 2004, 4, 507-518.	3.1	21
46	Induction of β-Cell Proliferation and Retinoblastoma Protein Phosphorylation in Rat and Human Islets Using Adenovirus-Mediated Transfer of Cyclin-Dependent Kinase-4 and Cyclin D1. Diabetes, 2004, 53, 149-159.	0.6	127
47	hlscA: a protein implicated in the biogenesis of iron–sulfur clusters. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1700, 179-188.	2.3	32
48	Expression and cellular localization of Na,K-ATPase isoforms in the rat ventral prostate. BJU International, 2003, 92, 793-802.	2.5	12
49	Na+, K+-ATPase Isozyme Diversity; Comparative Biochemistry and Physiological Implications of Novel Functional Interactions. Bioscience Reports, 2000, 20, 51-91.	2.4	280
50	Primary Cilia in Pancreatic β- and α-Cells: Time to Revisit the Role of Insulin-Degrading Enzyme. Frontiers in Endocrinology, 0, 13, .	3.5	1