Tobias Eckle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298644/publications.pdf

Version: 2024-02-01

88 papers 8,874 citations

38 h-index 80 g-index

89 all docs 89 docs citations

89 times ranked 10571 citing authors

#	Article	IF	CITATIONS
1	Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L647-L661.	2.9	5
2	Targeting alveolarâ€specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB Journal, 2021, 35, e21468.	0.5	20
3	Targeting circadian PER2 as therapy in myocardial ischemia and reperfusion injury. Chronobiology International, 2021, 38, 1262-1273.	2.0	5
4	Circadian Angiopoietin-Like-4 as a Novel Therapy in Cardiovascular Disease. Trends in Molecular Medicine, 2021, 27, 627-629.	6.7	6
5	Transcription-independent Induction of ERBB1 through Hypoxia-inducible Factor 2A Provides Cardioprotection during Ischemia and Reperfusion. Anesthesiology, 2020, 132, 763-780.	2.5	26
6	Intense Light Pretreatment Improves Hemodynamics, Barrier Function and Inflammation in a Murine Model of Hemorrhagic Shock Lung. Military Medicine, 2020, 185, e1542-e1550.	0.8	3
7	Cardiac Myosin Promotes Thrombin Generation and Coagulation In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 901-913.	2.4	7
8	Intense light as anticoagulant therapy in humans. PLoS ONE, 2020, 15, e0244792.	2.5	4
9	A Role for the Adenosine ADORA2B Receptor in Midazolam Induced Cognitive Dysfunction. Current Pharmaceutical Design, 2020, 26, 4330-4337.	1.9	2
10	A Role for the Adenosine ADORA2B Receptor in Midazolam Induced Cognitive Dysfunction. Current Pharmaceutical Design, 2020, 26, 4330-4337.	1.9	7
11	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
12	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
13	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
14	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
15	Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Reports, 2019, 28, 1471-1484.e11.	6.4	35
16	Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Current Pharmaceutical Design, 2019, 25, 1075-1090.	1.9	20
17	Dose-dependent Effects of Esmolol-epinephrine Combination Therapy in Myocardial Ischemia and Reperfusion Injury. Current Pharmaceutical Design, 2019, 25, 2199-2206.	1.9	4
18	Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nature Communications, 2018, 9, 816.	12.8	100

#	Article	IF	CITATIONS
19	The Period 2 Enhancer Nobiletin as Novel Therapy in Murine Models of Circadian Disruption Resembling Delirium*. Critical Care Medicine, 2018, 46, e600-e608.	0.9	33
20	Daytime variations in perioperative myocardial injury. Lancet, The, 2018, 391, 2104.	13.7	3
21	Diurnal variations in recovery times after general anaesthesia in children. British Journal of Anaesthesia, 2018, 121, 776-786.	3.4	6
22	The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury. Current Pharmaceutical Design, 2018, 24, 3376-3383.	1.9	23
23	A Comparison of Epinephrine, Esmolol, and the Combination of Both in Reperfusion Injury After Murine Myocardial Ischemia. FASEB Journal, 2018, 32, 512.4.	0.5	0
24	Circadian MicroRNAs in Cardioprotection. Current Pharmaceutical Design, 2017, 23, 3723-3730.	1.9	28
25	Pneumomediastinum and Bilateral Pneumothoraces Causing Respiratory Failure after Thyroid Surgery. Case Reports in Anesthesiology, 2017, 2017, 1-5.	0.4	1
26	Intense light-elicited upregulation of miR-21 facilitates glycolysis and cardioprotection through Per2-dependent mechanisms. PLoS ONE, 2017, 12, e0176243.	2.5	41
27	New "Guidance―for the Treatment of Hepatic Ischemia Reperfusion Injury Through Semaphorins and Plexins*. Critical Care Medicine, 2016, 44, 1623-1624.	0.9	2
28	The impact of sedation protocols on outcomes in critical illness. Annals of Translational Medicine, 2016, 4, 33.	1.7	3
29	ADORA2b Signaling in Cardioprotection. Journal of Nature and Science, 2016, 2, .	1.1	6
30	Next Generation of Cardiovascular Studies. Anesthesiology, 2015, 122, 486-488.	2.5	1
31	Health Implications of Disrupted Circadian Rhythms and the Potential for Daylight as Therapy. Anesthesiology, 2015, 122, 1170-1175.	2.5	60
32	Editorial (Thematic Issue: Health Impact and Management of a Disrupted Circadian Rhythm and Sleep in) Tj ETQq()	/Qyerlock 10
33	Circadian Rhythms in Anesthesia and Critical Care Medicine. Seminars in Cardiothoracic and Vascular Anesthesia, 2015, 19, 49-60.	1.0	50
34	Differential Tissue-Specific Function of Adora2b in Cardioprotection. Journal of Immunology, 2015, 195, 1732-1743.	0.8	34
35	About Dogs, Mice, and Men. Seminars in Cardiothoracic and Vascular Anesthesia, 2014, 18, 247-248.	1.0	3
36	Transesophageal Echocardiography in the Diagnosis of Acute Pericardial Tamponade During Hiatal Hernia Repair. Journal of Cardiothoracic and Vascular Anesthesia, 2014, 28, 112-114.	1.3	8

#	Article	IF	CITATIONS
37	Identification of Hypoxia-Inducible Factor HIF-1A as Transcriptional Regulator of the A2B Adenosine Receptor during Acute Lung Injury. Journal of Immunology, 2014, 192, 1249-1256.	0.8	101
38	Anesthetic Cardioprotection: The Role of Adenosine. Current Pharmaceutical Design, 2014, 20, 5690-5695.	1.9	13
39	Cardiac Period 2 in myocardial ischemia: Clinical implications of a light dependent protein. International Journal of Biochemistry and Cell Biology, 2013, 45, 667-671.	2.8	34
40	Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3â€nitrophenylhydrazones by <scp>UPLC </scp> / <scp>ESI </scp> â€ <scp>MS </scp> . Electrophoresis, 2013, 34, 2891-2900.	2.4	100
41	Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends in Molecular Medicine, 2013, 19, 345-354.	6.7	100
42	Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB Journal, 2013, 27, 3078-3089.	0.5	95
43	Analysis of Selected Sugars and Sugar Phosphates in Mouse Heart Tissue by Reductive Amination and Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 5965-5973.	6.5	45
44	Cardiac Per2 Functions as Novel Link between Fatty Acid Metabolism and Myocardial Inflammation during Ischemia and Reperfusion Injury of the Heart. PLoS ONE, 2013, 8, e71493.	2.5	64
45	HIF1A Reduces Acute Lung Injury by Optimizing Carbohydrate Metabolism in the Alveolar Epithelium. PLoS Biology, 2013, 11, e1001665.	5.6	138
46	Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nature Medicine, 2012, 18, 774-782.	30.7	278
47	Myocardial Ischemia Reperfusion Injury. Seminars in Cardiothoracic and Vascular Anesthesia, 2012, 16, 123-132.	1.0	385
48	Adora2b Signaling on Bone Marrow Derived Cells Dampens Myocardial Ischemia-Reperfusion Injury. Anesthesiology, 2012, 116, 1245-1257.	2.5	47
49	Detrimental Role For Gel-Forming Protein MUC5AC During Acute Lung Injury., 2011, , .		0
50	Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice. Journal of Visualized Experiments, $2011, \ldots$	0.3	7
51	Use of a Hanging Weight System for Coronary Artery Occlusion in Mice. Journal of Visualized Experiments, 2011, , .	0.3	21
52	The hypoxia–inflammation link and potential drug targets. Current Opinion in Anaesthesiology, 2011, 24, 363-369.	2.0	52
53	Role Of Mucosal Hypoxia-Inducible Factor (HIF)1a During Acute Lung Injury. , 2011, , .		O
54	Ischemia and reperfusionâ€"from mechanism to translation. Nature Medicine, 2011, 17, 1391-1401.	30.7	2,524

#	Article	IF	Citations
55	Interplay of Hypoxia and A2B Adenosine Receptors in Tissue Protection. Advances in Pharmacology, 2011, 61, 145-186.	2.0	69
56	Toll-like Receptor Signaling during Myocardial Ischemia. Anesthesiology, 2011, 114, 490-492.	2.5	14
57	Signaling through the A2B Adenosine Receptor Dampens Endotoxin-Induced Acute Lung Injury. Journal of Immunology, 2010, 184, 5271-5279.	0.8	154
58	Selective Deletion of the A1 Adenosine Receptor Abolishes Heart-Rate Slowing Effects of Intravascular Adenosine In Vivo. PLoS ONE, 2009, 4, e6784.	2.5	89
59	Role of Extracellular Adenosine in Acute Lung Injury. Physiology, 2009, 24, 298-306.	3.1	111
60	PHD2Mutation and Congenital Erythrocytosis with Paraganglioma. New England Journal of Medicine, 2009, 360, 1361-1362.	27.0	11
61	Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood, 2009, 113, 224-232.	1.4	196
62	Hypoxia-Inducible Factor-1 Is Central to Cardioprotection. Circulation, 2008, 118, 166-175.	1.6	372
63	Usefulness of pressure-controlled ventilation at high inspiratory pressures to induce acute lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L718-L724.	2.9	28
64	Impact of Ischemia and Reperfusion Times on Myocardial Infarct Size in Mice <i>In Vivo</i> Experimental Biology and Medicine, 2008, 233, 84-93.	2.4	54
65	TheHIF2AGene in Familial Erythrocytosis. New England Journal of Medicine, 2008, 358, 1965-1967.	27.0	5
66	Direct Treatment of Mouse or Human Blood With Soluble 5′-Nucleotidase Inhibits Platelet Aggregation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1477-1483.	2.4	59
67	A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood, 2008, 111, 2024-2035.	1.4	265
68	A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. Journal of Clinical Investigation, 2008, 118, 3301-15.	8.2	259
69	The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia. PLoS Medicine, 2008, 5, e137.	8.4	187
70	Identification of Ectonucleotidases CD39 and CD73 in Innate Protection during Acute Lung Injury. Journal of Immunology, 2007, 178, 8127-8137.	0.8	239
71	Contribution of Eâ€NTPDasel (CD39) to renal protection from ischemiaâ€reperfusion injury. FASEB Journal, 2007, 21, 2863-2873.	0.5	140
72	CD39/Ectonucleoside Triphosphate Diphosphohydrolase 1 Provides Myocardial Protection During Cardiac Ischemia/Reperfusion Injury. Circulation, 2007, 116, 1784-1794.	1.6	192

#	Article	IF	CITATIONS
73	Use of a hanging-weight system for isolated renal artery occlusion during ischemic preconditioning in mice. American Journal of Physiology - Renal Physiology, 2007, 292, F475-F485.	2.7	28
74	Lack of effect of extracellular adenosine generation and signaling on renal erythropoietin secretion during hypoxia. American Journal of Physiology - Renal Physiology, 2007, 293, F1501-F1511.	2.7	25
75	Upregulation of the Water Channel Aquaporin-4 as a Potential Cause of Postischemic Cell Swelling in a Murine Model of Myocardial Infarction. Cardiology, 2007, 107, 402-410.	1.4	39
76	Protective Role of Ecto-5′-Nucleotidase (CD73) in Renal Ischemia. Journal of the American Society of Nephrology: JASN, 2007, 18, 833-845.	6.1	139
77	Cardioprotection by Ecto-5′-Nucleotidase (CD73) and A2BAdenosine Receptors. Circulation, 2007, 115, 1581-1590.	1.6	412
78	Physiological roles for ecto-5'-nucleotidase (CD73). Purinergic Signalling, 2006, 2, 351-360.	2.2	443
79	Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2533-H2540.	3.2	123
80	Nucleotide Metabolism and Cell-Cell Interactions., 2006, 341, 73-88.		93
81	ATP Release From Activated Neutrophils Occurs via Connexin 43 and Modulates Adenosine-Dependent Endothelial Cell Function. Circulation Research, 2006, 99, 1100-1108.	4.5	314
82	Intraoperative metamizol as cause for acute anaphylactic collapse. European Journal of Anaesthesiology, 2005, 22, 810-812.	1.7	12
83	The influence of mixed HCMV UL97 wildtype and mutant strains on ganciclovir susceptibility in a cell associated plaque reduction assay. Journal of Clinical Virology, 2004, 30, 50-56.	3.1	16
84	Ganciclovirâ€Resistant Cytomegalovirus Disease after Allogeneic Stem Cell Transplantation: Pitfalls of Phenotypic Diagnosis by In Vitro Selection of an UL97 Mutant Strain. Journal of Infectious Diseases, 2003, 187, 139-143.	4.0	73
85	High Impact of an Expanded Restriction Fragment Length Polymorphism Assay on Detection of Ganciclovir-Resistant UL97 Mutants of Human Cytomegalovirus. Antimicrobial Agents and Chemotherapy, 2003, 47, 442-443.	3.2	12
86	Rapid development of ganciclovir-resistant cytomegalovirus infection in children after allogeneic stem cell transplantation in the early phase of immune cell recovery. Bone Marrow Transplantation, 2002, 30, 433-439.	2.4	40
87	Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood, 2000, 96, 3286-3289.	1.4	94
88	Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood, 2000, 96, 3286-3289.	1.4	2