Tobias Eckle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298644/publications.pdf Version: 2024-02-01

TORIAS FORIE

#	Article	IF	CITATIONS
1	Ischemia and reperfusion—from mechanism to translation. Nature Medicine, 2011, 17, 1391-1401.	30.7	2,524
2	Physiological roles for ecto-5'-nucleotidase (CD73). Purinergic Signalling, 2006, 2, 351-360.	2.2	443
3	Cardioprotection by Ecto-5′-Nucleotidase (CD73) and A2BAdenosine Receptors. Circulation, 2007, 115, 1581-1590.	1.6	412
4	Myocardial Ischemia Reperfusion Injury. Seminars in Cardiothoracic and Vascular Anesthesia, 2012, 16, 123-132.	1.0	385
5	Hypoxia-Inducible Factor-1 Is Central to Cardioprotection. Circulation, 2008, 118, 166-175.	1.6	372
6	ATP Release From Activated Neutrophils Occurs via Connexin 43 and Modulates Adenosine-Dependent Endothelial Cell Function. Circulation Research, 2006, 99, 1100-1108.	4.5	314
7	Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nature Medicine, 2012, 18, 774-782.	30.7	278
8	A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood, 2008, 111, 2024-2035.	1.4	265
9	A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. Journal of Clinical Investigation, 2008, 118, 3301-15.	8.2	259
10	ldentification of Ectonucleotidases CD39 and CD73 in Innate Protection during Acute Lung Injury. Journal of Immunology, 2007, 178, 8127-8137.	0.8	239
11	Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood, 2009, 113, 224-232.	1.4	196
12	CD39/Ectonucleoside Triphosphate Diphosphohydrolase 1 Provides Myocardial Protection During Cardiac Ischemia/Reperfusion Injury. Circulation, 2007, 116, 1784-1794.	1.6	192
13	The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia. PLoS Medicine, 2008, 5, e137.	8.4	187
14	Signaling through the A2B Adenosine Receptor Dampens Endotoxin-Induced Acute Lung Injury. Journal of Immunology, 2010, 184, 5271-5279.	0.8	154
15	Contribution of Eâ€NTPDasel (CD39) to renal protection from ischemiaâ€reperfusion injury. FASEB Journal, 2007, 21, 2863-2873.	O.5	140
16	Protective Role of Ecto-5′-Nucleotidase (CD73) in Renal Ischemia. Journal of the American Society of Nephrology: JASN, 2007, 18, 833-845.	6.1	139
17	HIF1A Reduces Acute Lung Injury by Optimizing Carbohydrate Metabolism in the Alveolar Epithelium. PLoS Biology, 2013, 11, e1001665.	5.6	138
18	Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2533-H2540.	3.2	123

#	Article	IF	CITATIONS
19	Role of Extracellular Adenosine in Acute Lung Injury. Physiology, 2009, 24, 298-306.	3.1	111
20	Identification of Hypoxia-Inducible Factor HIF-1A as Transcriptional Regulator of the A2B Adenosine Receptor during Acute Lung Injury. Journal of Immunology, 2014, 192, 1249-1256.	0.8	101
21	Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3â€nitrophenylhydrazones by <scp>UPLC</scp> / <scp>ESI</scp> â€ <scp>MS</scp> . Electrophoresis, 2013, 34, 2891-2900.	2.4	100
22	Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends in Molecular Medicine, 2013, 19, 345-354.	6.7	100
23	Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nature Communications, 2018, 9, 816.	12.8	100
24	Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB Journal, 2013, 27, 3078-3089.	0.5	95
25	Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood, 2000, 96, 3286-3289.	1.4	94
26	Nucleotide Metabolism and Cell-Cell Interactions. , 2006, 341, 73-88.		93
27	Selective Deletion of the A1 Adenosine Receptor Abolishes Heart-Rate Slowing Effects of Intravascular Adenosine In Vivo. PLoS ONE, 2009, 4, e6784.	2.5	89
28	Ganciclovirâ€Resistant Cytomegalovirus Disease after Allogeneic Stem Cell Transplantation: Pitfalls of Phenotypic Diagnosis by In Vitro Selection of an UL97 Mutant Strain. Journal of Infectious Diseases, 2003, 187, 139-143.	4.0	73
29	Interplay of Hypoxia and A2B Adenosine Receptors in Tissue Protection. Advances in Pharmacology, 2011, 61, 145-186.	2.0	69
30	Cardiac Per2 Functions as Novel Link between Fatty Acid Metabolism and Myocardial Inflammation during Ischemia and Reperfusion Injury of the Heart. PLoS ONE, 2013, 8, e71493.	2.5	64
31	Health Implications of Disrupted Circadian Rhythms and the Potential for Daylight as Therapy. Anesthesiology, 2015, 122, 1170-1175.	2.5	60
32	Direct Treatment of Mouse or Human Blood With Soluble 5′-Nucleotidase Inhibits Platelet Aggregation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1477-1483.	2.4	59
33	Impact of Ischemia and Reperfusion Times on Myocardial Infarct Size in Mice <i>In Vivo</i> . Experimental Biology and Medicine, 2008, 233, 84-93.	2.4	54
34	The hypoxia–inflammation link and potential drug targets. Current Opinion in Anaesthesiology, 2011, 24, 363-369.	2.0	52
35	Circadian Rhythms in Anesthesia and Critical Care Medicine. Seminars in Cardiothoracic and Vascular Anesthesia, 2015, 19, 49-60.	1.0	50
36	Adora2b Signaling on Bone Marrow Derived Cells Dampens Myocardial Ischemia-Reperfusion Injury. Anesthesiology, 2012, 116, 1245-1257.	2.5	47

#	Article	IF	CITATIONS
37	Analysis of Selected Sugars and Sugar Phosphates in Mouse Heart Tissue by Reductive Amination and Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 5965-5973.	6.5	45
38	Intense light-elicited upregulation of miR-21 facilitates glycolysis and cardioprotection through Per2-dependent mechanisms. PLoS ONE, 2017, 12, e0176243.	2.5	41
39	Rapid development of ganciclovir-resistant cytomegalovirus infection in children after allogeneic stem cell transplantation in the early phase of immune cell recovery. Bone Marrow Transplantation, 2002, 30, 433-439.	2.4	40
40	Upregulation of the Water Channel Aquaporin-4 as a Potential Cause of Postischemic Cell Swelling in a Murine Model of Myocardial Infarction. Cardiology, 2007, 107, 402-410.	1.4	39
41	Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Reports, 2019, 28, 1471-1484.e11.	6.4	35
42	Cardiac Period 2 in myocardial ischemia: Clinical implications of a light dependent protein. International Journal of Biochemistry and Cell Biology, 2013, 45, 667-671.	2.8	34
43	Differential Tissue-Specific Function of Adora2b in Cardioprotection. Journal of Immunology, 2015, 195, 1732-1743.	0.8	34
44	The Period 2 Enhancer Nobiletin as Novel Therapy in Murine Models of Circadian Disruption Resembling Delirium*. Critical Care Medicine, 2018, 46, e600-e608.	0.9	33
45	Use of a hanging-weight system for isolated renal artery occlusion during ischemic preconditioning in mice. American Journal of Physiology - Renal Physiology, 2007, 292, F475-F485.	2.7	28
46	Usefulness of pressure-controlled ventilation at high inspiratory pressures to induce acute lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L718-L724.	2.9	28
47	Circadian MicroRNAs in Cardioprotection. Current Pharmaceutical Design, 2017, 23, 3723-3730.	1.9	28
48	Transcription-independent Induction of ERBB1 through Hypoxia-inducible Factor 2A Provides Cardioprotection during Ischemia and Reperfusion. Anesthesiology, 2020, 132, 763-780.	2.5	26
49	Lack of effect of extracellular adenosine generation and signaling on renal erythropoietin secretion during hypoxia. American Journal of Physiology - Renal Physiology, 2007, 293, F1501-F1511.	2.7	25
50	The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury. Current Pharmaceutical Design, 2018, 24, 3376-3383.	1.9	23
51	Use of a Hanging Weight System for Coronary Artery Occlusion in Mice. Journal of Visualized Experiments, 2011, , .	0.3	21
52	Targeting alveolarâ€specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB Journal, 2021, 35, e21468.	0.5	20
53	Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Current Pharmaceutical Design, 2019, 25, 1075-1090.	1.9	20
54	The influence of mixed HCMV UL97 wildtype and mutant strains on ganciclovir susceptibility in a cell associated plaque reduction assay. Journal of Clinical Virology, 2004, 30, 50-56.	3.1	16

#	Article	IF	CITATIONS
55	Editorial (Thematic Issue: Health Impact and Management of a Disrupted Circadian Rhythm and Sleep in) Tj ETQq1	1.9.7843	14 rgBT /O
56	Toll-like Receptor Signaling during Myocardial Ischemia. Anesthesiology, 2011, 114, 490-492.	2.5	14
57	Anesthetic Cardioprotection: The Role of Adenosine. Current Pharmaceutical Design, 2014, 20, 5690-5695.	1.9	13
58	High Impact of an Expanded Restriction Fragment Length Polymorphism Assay on Detection of Ganciclovir-Resistant UL97 Mutants of Human Cytomegalovirus. Antimicrobial Agents and Chemotherapy, 2003, 47, 442-443.	3.2	12
59	Intraoperative metamizol as cause for acute anaphylactic collapse. European Journal of Anaesthesiology, 2005, 22, 810-812.	1.7	12
60	PHD2Mutation and Congenital Erythrocytosis with Paraganglioma. New England Journal of Medicine, 2009, 360, 1361-1362.	27.0	11
61	Transesophageal Echocardiography in the Diagnosis of Acute Pericardial Tamponade During Hiatal Hernia Repair. Journal of Cardiothoracic and Vascular Anesthesia, 2014, 28, 112-114.	1.3	8
62	Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice. Journal of Visualized Experiments, 2011, , .	0.3	7
63	Cardiac Myosin Promotes Thrombin Generation and Coagulation In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 901-913.	2.4	7
64	A Role for the Adenosine ADORA2B Receptor in Midazolam Induced Cognitive Dysfunction. Current Pharmaceutical Design, 2020, 26, 4330-4337.	1.9	7
65	Diurnal variations in recovery times after general anaesthesia in children. British Journal of Anaesthesia, 2018, 121, 776-786.	3.4	6
66	Circadian Angiopoietin-Like-4 as a Novel Therapy in Cardiovascular Disease. Trends in Molecular Medicine, 2021, 27, 627-629.	6.7	6
67	ADORA2b Signaling in Cardioprotection. Journal of Nature and Science, 2016, 2, .	1.1	6
68	TheHIF2AGene in Familial Erythrocytosis. New England Journal of Medicine, 2008, 358, 1965-1967.	27.0	5
69	Targeting circadian PER2 as therapy in myocardial ischemia and reperfusion injury. Chronobiology International, 2021, 38, 1262-1273.	2.0	5
70	Intense light-elicited alveolar type 2-specific circadian PER2 protects from bacterial lung injury via BPIFB1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L647-L661.	2.9	5
71	Intense light as anticoagulant therapy in humans. PLoS ONE, 2020, 15, e0244792.	2.5	4
72	Dose-dependent Effects of Esmolol-epinephrine Combination Therapy in Myocardial Ischemia and Reperfusion Injury. Current Pharmaceutical Design, 2019, 25, 2199-2206.	1.9	4

#	Article	IF	CITATIONS
73	About Dogs, Mice, and Men. Seminars in Cardiothoracic and Vascular Anesthesia, 2014, 18, 247-248.	1.0	3
74	Daytime variations in perioperative myocardial injury. Lancet, The, 2018, 391, 2104.	13.7	3
75	Intense Light Pretreatment Improves Hemodynamics, Barrier Function and Inflammation in a Murine Model of Hemorrhagic Shock Lung. Military Medicine, 2020, 185, e1542-e1550.	0.8	3
76	The impact of sedation protocols on outcomes in critical illness. Annals of Translational Medicine, 2016, 4, 33.	1.7	3
77	New "Guidance―for the Treatment of Hepatic Ischemia Reperfusion Injury Through Semaphorins and Plexins*. Critical Care Medicine, 2016, 44, 1623-1624.	0.9	2
78	Drug-resistant human cytomegalovirus infection in children after allogeneic stem cell transplantation may have different clinical outcomes. Blood, 2000, 96, 3286-3289.	1.4	2
79	A Role for the Adenosine ADORA2B Receptor in Midazolam Induced Cognitive Dysfunction. Current Pharmaceutical Design, 2020, 26, 4330-4337.	1.9	2
80	Next Generation of Cardiovascular Studies. Anesthesiology, 2015, 122, 486-488.	2.5	1
81	Pneumomediastinum and Bilateral Pneumothoraces Causing Respiratory Failure after Thyroid Surgery. Case Reports in Anesthesiology, 2017, 2017, 1-5.	0.4	1
82	Detrimental Role For Gel-Forming Protein MUC5AC During Acute Lung Injury. , 2011, , .		0
83	Role Of Mucosal Hypoxia-Inducible Factor (HIF)1a During Acute Lung Injury. , 2011, , .		0
84	A Comparison of Epinephrine, Esmolol, and the Combination of Both in Reperfusion Injury After Murine Myocardial Ischemia. FASEB Journal, 2018, 32, 512.4.	0.5	0
85	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
86	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
87	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0
88	Intense light as anticoagulant therapy in humans. , 2020, 15, e0244792.		0