Miguel Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298620/publications.pdf

Version: 2024-02-01

28 papers	1,443 citations	15 h-index	677142 22 g-index
30	30	30	2305
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochemical and Photobiological Sciences, 2011, 10, 822-831.	2.9	295
2	Nanomechanical biosensors: a new sensing tool. TrAC - Trends in Analytical Chemistry, 2006, 25, 196-206.	11.4	248
3	Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. Journal of Optics, 2006, 8, S561-S566.	1.5	154
4	The in vivo efficacy of phthalocyanine–nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. European Journal of Cancer, 2010, 46, 1910-1918.	2.8	146
5	Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Analytical and Bioanalytical Chemistry, 2012, 402, 3071-3089.	3.7	102
6	Nanomechanics of the Formation of DNA Self-Assembled Monolayers and Hybridization on Microcantilevers. Langmuir, 2004, 20, 9663-9668.	3.5	97
7	A highly sensitive microsystem based on nanomechanical biosensors for genomics applications. Sensors and Actuators B: Chemical, 2006, 118, 2-10.	7.8	68
8	Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma. Photochemical and Photobiological Sciences, 2016, 15, 618-625.	2.9	48
9	Singlet oxygen generation using a porous monolithic polymer supported photosensitizer: potential application to the photodynamic destruction of melanoma cells. Photochemical and Photobiological Sciences, 2009, 8, 37-44.	2.9	38
10	Selection of aptamers against KMP-11 using colloidal gold during the SELEX process. Biochemical and Biophysical Research Communications, 2003, 308, 214-218.	2.1	37
11	Aptasensor based on the selective electrodeposition of protein-linked gold nanoparticles on screen-printed electrodes. Analyst, The, 2011, 136, 1810.	3.5	28
12	Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes. Biosensors and Bioelectronics, 2009, 25, 778-783.	10.1	27
13	<i>In Vitro</i> Selection of <i>Leishmania infantum</i> H3-Binding ssDNA Aptamers. Oligonucleotides, 2010, 20, 207-213.	2.7	23
14	A magnesium-induced RNA conformational switch at the internal ribosome entry site of hepatitis C virus genome visualized by atomic force microscopy. Nucleic Acids Research, 2015, 43, 565-580.	14.5	23
15	Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biology, 2019, 16, 295-308.	3.1	17
16	Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV–vis spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 389-397.	3.9	14
17	A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2. Molecules, 2019, 24, 1213.	3.8	14
18	In vitro Selection of High Affinity DNA and RNA Aptamers that Detect Hepatitis C Virus Core Protein of Genotypes 1 to 4 and Inhibit Virus Production in Cell Culture. Journal of Molecular Biology, 2022, 434, 167501.	4.2	13

#	Article	IF	CITATIONS
19	Advances on Aptamers Targeting Plasmodium and Trypanosomatids. Current Medicinal Chemistry, 2011, 18, 5003-5010.	2.4	10
20	CANTILEVER BIOSENSORS. , 2008, , 419-452.		9
21	Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces. ACS Omega, 2019, 4, 3287-3297.	3.5	9
22	An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies. PLoS ONE, 2016, 11, e0166902.	2.5	7
23	Lab-on-a-chip platforms based on highly sensitive nanophotonic Si biosensors for single nucleotide DNA testing. , 2007, , .		6
24	Aptasensor., 2015,, 114-115.		4
25	Aptasensors., 2017,,.		2
26	Morphology Clustering Software for AFM Images, Based on Particle Isolation and Artificial Neural Networks. IEEE Access, 2019, 7, 160304-160323.	4.2	2
27	Photonic Micro/Nanobiosensors for Early Diagnosis of Diseases. , 2006, , .		0
28	Aptasensor. , 2014, , 1-3.		0