Yonathan Arfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298335/publications.pdf

Version: 2024-02-01

		840776	996975
15	700	11	15
papers	citations	h-index	g-index
19	19	19	1109
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	MIB–MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5406-5411.	7.1	97
2	Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9109-9114.	7.1	96
3	Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp Nature Communications, 2013, 4, 1810.	12.8	92
4	Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiology Ecology, 2012, 79, 433-444.	2.7	79
5	Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10854-10859.	7.1	77
6	Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecology, 2012, 5, 282-285.	1.6	73
7	Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Applied Microbiology and Biotechnology, 2013, 97, 4873-4885.	3.6	33
8	Differential Gene Expression in Pycnoporus coccineus during Interspecific Mycelial Interactions with Different Competitors. Applied and Environmental Microbiology, 2013, 79, 6626-6636.	3.1	33
9	Removal of a Subset of Non-essential Genes Fully Attenuates a Highly Virulent Mycoplasma Strain. Frontiers in Microbiology, 2019, 10, 664.	3.5	31
10	CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System. ACS Synthetic Biology, 2019, 8, 2547-2557.	3.8	25
11	Genome Engineering of the Fast-Growing <i>Mycoplasma feriruminatoris</i> toward a Live Vaccine Chassis. ACS Synthetic Biology, 2022, 11, 1919-1930.	3.8	16
12	The mycoplasma surface proteins MIB and MIP promote the dissociation of the antibody-antigen interaction. Science Advances, $2021, 7, \ldots$	10.3	15
13	Budding yeast as a factory to engineer partial and complete microbial genomes. Current Opinion in Systems Biology, 2020, 24, 1-8.	2.6	13
14	Beware of Mycoplasma Anti-immunoglobulin Strategies. MBio, 2021, 12, e0197421.	4.1	12
15	Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas. Microbiology Spectrum, 2022, 10, .	3.0	3