List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298253/publications.pdf Version: 2024-02-01

ΙΟΝΑΤΗΛΝ Ο ΚΛΙΙΝΙΤΖ

#	Article	IF	CITATIONS
1	DDS: A Decade of Distinguished Scholarship. Digestive Diseases and Sciences, 2021, 66, 1375-1379.	2.3	Ο
2	Welcome Associate Editors Andrew Stewart Day and Hiromu Suzuki. Digestive Diseases and Sciences, 2021, 66, 329-330.	2.3	0
3	Casting a Wider NET: Is It Crohn's or Is It Neuroendocrine Tumor?. Digestive Diseases and Sciences, 2021, 66, 1802-1806.	2.3	0
4	DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. Journal of Clinical Investigation, 2021, 131, .	8.2	35
5	AGA Clinical Practice Guidelines on the Gastrointestinal Evaluation of Iron Deficiency Anemia. Gastroenterology, 2021, 161, 362-365.	1.3	3
6	Short-chain fatty acid receptors involved in epithelial acetylcholine release in rat caecum. European Journal of Pharmacology, 2021, 906, 174292.	3.5	4
7	Welcome Associate Editors Surinder Singh Rana and Rupjyoti Talukdar. Digestive Diseases and Sciences, 2021, 66, 655-656.	2.3	Ο
8	Intestinal Transport of Lipopolysaccharides. , 2021, , .		0
9	Deficient Active Transport Activity in Healing Mucosa After Mild Gastric Epithelial Damage. Digestive Diseases and Sciences, 2020, 65, 119-131.	2.3	14
10	The "Leaky Gut― Tight Junctions but Loose Associations?. Digestive Diseases and Sciences, 2020, 65, 1277-1287.	2.3	88
11	Oral Defense: How Oral Rehydration Solutions Revolutionized the Treatment of Toxigenic Diarrhea. Digestive Diseases and Sciences, 2020, 65, 345-348.	2.3	8
12	Duodenal chemosensory system: enterocytes, enteroendocrine cells, and tuft cells. Current Opinion in Gastroenterology, 2020, 36, 501-508.	2.3	7
13	Lipopolysaccharides transport during fat absorption in rodent small intestine. American Journal of Physiology - Renal Physiology, 2020, 318, G1070-G1087.	3.4	28
14	PowerPoint to the People: The Four Secrets to Delivering a Great Medical Talk. Digestive Diseases and Sciences, 2020, 65, 1892-1894.	2.3	2
15	Conquering COVID-19: How DDS Is CoVering the Pandemic. Digestive Diseases and Sciences, 2020, 65, 1873-1873.	2.3	Ο
16	Impacting Underserved Communities as a GI Trainee. Digestive Diseases and Sciences, 2020, 65, 1596-1598.	2.3	0
17	GLP-2 Acutely Prevents Endotoxin-Related Increased Intestinal Paracellular Permeability in Rats. Digestive Diseases and Sciences, 2020, 65, 2605-2618.	2.3	12
18	DDS-SIRC Collaboration: L'Inizio di una Bella Amicizia. Digestive Diseases and Sciences, 2019, 64, 2113-2113.	2.3	0

#	Article	IF	CITATIONS
19	Control of Intestinal Epithelial Proliferation and Differentiation: The Microbiome, Enteroendocrine L Cells, Telocytes, Enteric Nerves, and GLP, Too. Digestive Diseases and Sciences, 2019, 64, 2709-2716.	2.3	18
20	Duodenal Chemosensing of Short-Chain Fatty Acids: Implications for GI Diseases. Current Gastroenterology Reports, 2019, 21, 35.	2.5	12
21	Introduction to "DDS Citation Classicsâ€: Reaping Dividends from Rising Interest. Digestive Diseases and Sciences, 2019, 64, 2384-2384.	2.3	Ο
22	Adenylyl Cyclase 6 Expression Is Essential for Cholera Toxin–Induced Diarrhea. Journal of Infectious Diseases, 2019, 220, 1719-1728.	4.0	11
23	Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Research, 2019, 8, 1629.	1.6	99
24	Magnetic Resonance Imaging: The Nuclear Option. Digestive Diseases and Sciences, 2018, 63, 1100-1101.	2.3	2
25	A Tribute to Paul H. Guth, MD (1927–2017). Digestive Diseases and Sciences, 2018, 63, 807-810.	2.3	0
26	Duodenal chemosensing. Current Opinion in Gastroenterology, 2018, 34, 422-427.	2.3	5
27	Chemosensing in the Colon. , 2018, , 671-682.		2
28	Luminal Chemosensing and Mucosal Defenses in the Upper GI Tract. , 2018, , 709-719.		1
29	Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion. Cell Host and Microbe, 2018, 23, 775-785.e5.	11.0	268
30	Teduglutide, the stable GLPâ€2 analog inhibits lipidâ€induced LPS transport into the portal vein and intestinal paracellular permeability after systemic inflammation. FASEB Journal, 2018, 32, 873.6.	0.5	1
31	Basolateral FFA2 of enterochromaffin cells contributes to 5â€HT release in rat and mouse duodenum. FASEB Journal, 2018, 32, 747.12.	0.5	0
32	Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 151-161.	2.5	13
33	Development of Monoclonal Antibodies: The Dawn of mAb Rule. Digestive Diseases and Sciences, 2017, 62, 831-832.	2.3	9
34	FFA3 Activation Stimulates Duodenal Bicarbonate Secretion and Prevents NSAID-Induced Enteropathy via the GLP-2 Pathway in Rats. Digestive Diseases and Sciences, 2017, 62, 1944-1952.	2.3	19
35	FFA2 activation combined with ulcerogenic COX inhibition induces duodenal mucosal injury via the 5-HT pathway in rats. American Journal of Physiology - Renal Physiology, 2017, 313, G117-G128.	3.4	17
36	Luminal chemosensing in the gastroduodenal mucosa. Current Opinion in Gastroenterology, 2017, 33, 439-445.	2.3	17

#	Article	IF	CITATIONS
37	Gut chemosensing: implications for disease pathogenesis. F1000Research, 2016, 5, 2424.	1.6	12
38	Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor <scp>TGR</scp> 5 agonist, <scp>INT</scp> â€777: role of submucosal neurons. Neurogastroenterology and Motility, 2016, 28, 1663-1676.	3.0	19
39	Sa1705 FFA3 Activation Inhibits Nicotine-induced Secretion and Motility via Enteric Nervous Reflex in Rat Proximal Colon. Gastroenterology, 2016, 150, S352.	1.3	1
40	Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon. Journal of Physiology, 2016, 594, 3339-3352.	2.9	45
41	Welcome Associate Editors Ajay Goel, Aida Habtezion, and Walter Park. Digestive Diseases and Sciences, 2016, 61, 3093-3094.	2.3	0
42	DDS Elementary Style: A Brief Guide for Authors. Digestive Diseases and Sciences, 2016, 61, 2147-2150.	2.3	0
43	Gastrointestinal defense mechanisms. Current Opinion in Gastroenterology, 2016, 32, 461-466.	2.3	11
44	The Doppler Effect: A Century from Red Shift to Red Spot. Digestive Diseases and Sciences, 2016, 61, 340-341.	2.3	4
45	CFTR and pHi regulation. American Journal of Physiology - Renal Physiology, 2016, 310, G1183-G1183.	3.4	1
46	Endoscopic and clinical evaluation of treatment and prognosis of Cronkhite–Canada syndrome: a Japanese nationwide survey. Journal of Gastroenterology, 2016, 51, 327-336.	5.1	78
47	The effects of a <scp>TGR</scp> 5 agonist and a dipeptidyl peptidase <scp>IV</scp> inhibitor on dextran sulfate sodiumâ€induced colitis in mice. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 60-65.	2.8	36
48	Gastroduodenal mucosal defense mechanisms. Current Opinion in Gastroenterology, 2015, 31, 486-491.	2.3	13
49	Combined treatment with dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin and elemental diets reduced indomethacin-induced intestinal injury in rats via the increase of mucosal glucagon-like peptide-2 concentration. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 155-162.	1.4	15
50	Sa1725 FFA2 Activation Suppresses Basal and Stimulated Gastric Acid Secretion via 5-HT3 Receptor Activation in Rats. Gastroenterology, 2015, 148, S-315.	1.3	1
51	Peripheral Corticotropin-Releasing Factor Receptor Type 2 Activation Increases Colonic Blood Flow Through Nitric Oxide Pathway in Rats. Digestive Diseases and Sciences, 2015, 60, 858-867.	2.3	6
52	SCFA transport in rat duodenum. American Journal of Physiology - Renal Physiology, 2015, 308, G188-G197.	3.4	42
53	The Discovery of PCR: ProCuRement of Divine Power. Digestive Diseases and Sciences, 2015, 60, 2230-2231.	2.3	6
54	Shortâ€chain fatty acid sensing in rat duodenum. Journal of Physiology, 2015, 593, 585-599.	2.9	69

#	Article	IF	CITATIONS
55	Bugs, genes, fatty acids, and serotonin: Unraveling inflammatory bowel disease?. F1000Research, 2015, 4, 1146.	1.6	6
56	The Fruits of Fiber: The Invention of the Flexible Fiberoptic Gastroscope. Digestive Diseases and Sciences, 2014, 59, 2616-2618.	2.3	6
57	A Novel Phosphorus Repletion Strategy in a Patient With Duodenal Perforation. Nutrition in Clinical Practice, 2014, 29, 402-405.	2.4	2
58	Prostaglandin pathways in duodenal chemosensing. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 93-98.	2.8	5
59	Su1943 GPR43 Activation With COX Inhibition Induces Duodenal Injury via 5-HT Pathway. Gastroenterology, 2014, 146, S-504-S-505.	1.3	1
60	Introduction to the 80th Anniversary Issue. Digestive Diseases and Sciences, 2014, 59, 1-1.	2.3	4
61	Paradigm Shifts in Perspective III: The Discovery of Tumor Necrosis Factor. Digestive Diseases and Sciences, 2014, 59, 710-711.	2.3	1
62	Duodenal luminal nutrient sensing. Current Opinion in Pharmacology, 2014, 19, 67-75.	3.5	33
63	Priming the (Proton) Pump. Digestive Diseases and Sciences, 2014, 59, 1356-1357.	2.3	2
64	Identification of a selective inhibitor of murine intestinal alkaline phosphatase (ML260) by concurrent ultra-high throughput screening against human and mouse isozymes. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1000-1004.	2.2	6
65	Dipeptidyl Peptidase IV Inhibition Prevents the Formation and Promotes the Healing of Indomethacin-Induced Intestinal Ulcers in Rats. Digestive Diseases and Sciences, 2014, 59, 1286-1295.	2.3	23
66	Duodenal Luminal Chemosensing; Acid, ATP, and Nutrients. Current Pharmaceutical Design, 2014, 20, 2760-2765.	1.9	25
67	Introduction to the "Paradigm Shifts in Perspective―Series. Digestive Diseases and Sciences, 2013, 58, 1825-1826.	2.3	1
68	Pathobiology and Potential Therapeutic Value of Intestinal Short-Chain Fatty Acids in Gut Inflammation and Obesity. Digestive Diseases and Sciences, 2013, 58, 2756-2766.	2.3	62
69	Wireless Telemetry and Cystic Fibrosis: Just the pHacts. Digestive Diseases and Sciences, 2013, 58, 2129-2130.	2.3	0
70	Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum. American Journal of Physiology - Renal Physiology, 2012, 303, G810-G816.	3.4	26
71	May the Truth Be with You: Lubiprostone as EP Receptor Agonist/ClC-2 Internalizing "Inhibitor― Digestive Diseases and Sciences, 2012, 57, 2740-2742.	2.3	9
72	Su1745 Differential Expression of Short-Chain Fatty Acid Receptor FFA2 and FFA3 in Foregut. Gastroenterology, 2012, 142, S-494.	1.3	5

#	Article	IF	CITATIONS
73	Digestive Diseases and Sciences: Sadness, Satisfaction, and Sanguinity. Digestive Diseases and Sciences, 2012, 57, 1742-1744.	2.3	Ο
74	Oesophageal sensation in response to high PCO ₂ and acidic solutions in nonerosive reflux disease. European Journal of Clinical Investigation, 2012, 42, 195-202.	3.4	2
75	Duodenal chemosensing: Master control for epigastric sensation?. Journal of Gastroenterology and Hepatology (Australia), 2011, 26, 6-7.	2.8	9
76	Duodenal Chemosensing and Mucosal Defenses. Digestion, 2011, 83, 25-31.	2.3	22
77	Umami Receptor Activation Increases Duodenal Bicarbonate Secretion via Glucagon-Like Peptide-2 Release in Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 464-473.	2.5	64
78	Mechanisms of Intragastric pH Sensing. Current Gastroenterology Reports, 2010, 12, 465-470.	2.5	23
79	Evaluation and Treatment of Iron Deficiency Anemia: A Gastroenterological Perspective. Digestive Diseases and Sciences, 2010, 55, 548-559.	2.3	116
80	Lafutidine, a Protective H2 Receptor Antagonist, Enhances Mucosal Defense in Rat Esophagus. Digestive Diseases and Sciences, 2010, 55, 3063-3069.	2.3	16
81	Endogenous Luminal Surface Adenosine Signaling Regulates Duodenal Bicarbonate Secretion in Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 607-613.	2.5	19
82	Gastroduodenal mucosal defense. Current Opinion in Gastroenterology, 2010, 26, 604-610.	2.3	48
83	Luminal chemosensing and upper gastrointestinal mucosal defenses. American Journal of Clinical Nutrition, 2009, 90, 826S-831S.	4.7	62
84	Luminal I-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. American Journal of Physiology - Renal Physiology, 2009, 297, G781-G791.	3.4	92
85	Gastroenterology Research Group and Digestive Diseases and Sciences. Digestive Diseases and Sciences, 2009, 54, 5-5.	2.3	Ο
86	Report from the GRG President. Digestive Diseases and Sciences, 2009, 54, 699-700.	2.3	0
87	Lubiprostone Stimulates Duodenal Bicarbonate Secretion in Rats. Digestive Diseases and Sciences, 2009, 54, 2063-2069.	2.3	30
88	GRG Update: DDW 2009 and Upcoming GRG-Sponsored Meetings. Digestive Diseases and Sciences, 2009, 54, 2301-2302.	2.3	0
89	Gut sensing mechanisms. Current Gastroenterology Reports, 2009, 11, 442-447.	2.5	15
90	Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. Journal of Physiology, 2009, 587, 3651-3663.	2.9	87

#	Article	IF	CITATIONS
91	Gastroduodenal mucosal defense. Current Gastroenterology Reports, 2008, 10, 548-554.	2.5	10
92	TNAP, TrAP, ectoâ€purinergic signaling, and bone remodeling. Journal of Cellular Biochemistry, 2008, 105, 655-662.	2.6	87
93	CFTR inhibition augments NHE3 activity during luminal high CO2exposure in rat duodenal mucosa. American Journal of Physiology - Renal Physiology, 2008, 294, C1318-C1327.	3.4	13
94	Personal reminiscences about Morton Grossman and the founding of the Center for Ulcer Research and Education (CURE). American Journal of Physiology - Renal Physiology, 2008, 294, G1109-G1113.	3.4	7
95	Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. American Journal of Physiology - Renal Physiology, 2007, 293, G1223-G1233.	3.4	74
96	Gastroduodenal defense. Current Opinion in Gastroenterology, 2007, 23, 607-616.	2.3	46
97	Fistuloclysis: Case Report and Literature Review. Nutrition in Clinical Practice, 2007, 22, 553-557.	2.4	24
98	NKCC1: tales from the dark side of the crypt. Journal of Physiology, 2007, 582, 477-477.	2.9	0
99	Carbonic Anhydrases and Mucosal Vanilloid Receptors Help Mediate the Hyperemic Response to Luminal CO2 in Rat Duodenum. Gastroenterology, 2006, 131, 142-152.	1.3	61
100	Gastroduodenal Mucosal Defense. , 2006, , 1259-1291.		15
101	Epithelial carbonic anhydrases facilitate <i>P</i> _{CO2} and pH regulation in rat duodenal mucosa. Journal of Physiology, 2006, 573, 827-842.	2.9	58
102	Duodenal Carbonic Anhydrase: Mucosal Protection, Luminal Chemosensing, and Gastric Acid Disposal. Keio Journal of Medicine, 2006, 55, 96-106.	1.1	23
103	A novel small molecule CFTR inhibitor attenuates HCO3â^' secretion and duodenal ulcer formation in rats. American Journal of Physiology - Renal Physiology, 2005, 289, G753-G759.	3.4	25
104	Mechanism of augmented duodenal HCO3â^'secretion after elevation of luminal CO2. American Journal of Physiology - Renal Physiology, 2005, 288, G557-G563.	3.4	25
105	Role of gastric mast cells in the regulation of central TRH analog-induced hyperemia in rats. Peptides, 2005, 26, 1580-1589.	2.4	6
106	Cystic fibrosis gene mutation reduces epithelial cell acidification and injury in acid-perfused mouse duodenum. Gastroenterology, 2004, 127, 1162-1173.	1.3	36
107	Gastroduodenal mucosal defense: role of endogenous mediators. Current Opinion in Gastroenterology, 2004, 20, 526-532.	2.3	17
108	Gastroduodenal mucosal defense: an integrated protective response. Current Opinion in Gastroenterology, 2003, 19, 526-532.	2.3	9

#	Article	IF	CITATIONS
109	Acid-sensing pathways in rat gastrointestinal mucosa. Journal of Gastroenterology, 2002, 37, 133-138.	5.1	38
110	Luminal acid elicits a protective duodenal mucosal response Keio Journal of Medicine, 2002, 51, 29-35.	1.1	17
111	Integrated duodenal protective response to acid. Life Sciences, 2001, 69, 3073-3081.	4.3	10
112	Sensory pathways and cyclooxygenase regulate mucus gel thickness in rat duodenum. American Journal of Physiology - Renal Physiology, 2001, 280, G470-G474.	3.4	29
113	Cellular bicarbonate protects rat duodenal mucosa from acid-induced injury. Journal of Clinical Investigation, 2001, 108, 1807-1816.	8.2	51
114	Dynamic regulation of mucus gel thickness in rat duodenum. American Journal of Physiology - Renal Physiology, 2000, 279, G437-G447.	3.4	55
115	Barrier Function of Gastric Mucus Keio Journal of Medicine, 1999, 48, 63-68.	1.1	37
116	Acid-sensing pathways of rat duodenum. American Journal of Physiology - Renal Physiology, 1999, 277, G268-G274.	3.4	47
117	Regulation of intracellular pH and blood flow in rat duodenal epithelium in vivo. American Journal of Physiology - Renal Physiology, 1999, 276, G293-G302.	3.4	32
118	Vagal mechanisms underlying gastric protection induced by chemical activation of raphe pallidus in rats. American Journal of Physiology - Renal Physiology, 1998, 275, G1056-G1062.	3.4	19
119	Regulation of Intracellular pH: Role in Gastric Mucosal Defence Keio Journal of Medicine, 1996, 45, 155-160.	1.1	0
120	Impairment of gastric mucosal defenses measuredin vivo in cirrhotic rats. Hepatology, 1994, 20, 445-452.	7.3	15
121	Inhibition of Gentamicin Uptake into Cultured Mouse Proximal Tubule Epithelial Cells by L‣ysine. Journal of Clinical Pharmacology, 1993, 33, 63-69.	2.0	28
122	Localizing glucose transport proteins: Active investigation of passive carriers. Hepatology, 1991, 13, 800-802.	7.3	0
123	Ca2+ and cAMP activate K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon. Journal of Membrane Biology, 1989, 110, 19-28.	2.1	55
124	The GI Effects of GLP-1 – The Genesis of Longstanding Progress. Digestive Diseases and Sciences, 0, , .	2.3	0