Christoph Hahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/529742/publications.pdf

Version: 2024-02-01

257450 289244 1,789 61 24 40 citations h-index g-index papers 61 61 61 2324 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. British Journal of Nutrition, 2008, 99, 559-564.	2.3	133
2	Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Communications in Mass Spectrometry, 2010, 24, 3387-3404.	1.5	120
3	Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MS. Phytochemistry, 2014, 108, 252-263.	2.9	115
4	Unraveling the structure of the black tea thearubigins. Archives of Biochemistry and Biophysics, 2010, 501, 37-51.	3.0	113
5	Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: Implications for its chemopreventive activity. International Journal of Cancer, 2005, 117, 356-362.	5.1	77
6	Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 2017, 99, 550-559.	6.2	74
7	Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. American Journal of Clinical Nutrition, 2020, 112, 1051-1068.	4.7	65
8	How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 1575-1582.	1.5	62
9	Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Research International, 2018, 109, 506-516.	6.2	51
10	Diversity of Kale (Brassica oleraceavar.sabellica): Glucosinolate Content and Phylogenetic Relationships. Journal of Agricultural and Food Chemistry, 2016, 64, 3215-3225.	5. 2	49
11	Neuraminidase inhibition of Dietary chlorogenic acids and derivatives – potential antivirals from dietary sources. Food and Function, 2016, 7, 2052-2059.	4.6	48
12	Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 2018, 111, 137-147.	6.2	45
13	Biological activities of Ficus carica latex for potential therapeutics in Human Papillomavirus (HPV) related cervical cancers. Scientific Reports, 2019, 9, 1013.	3.3	45
14	Profiling and Quantification of Phenolics in <i>Stevia rebaudiana</i> Leaves. Journal of Agricultural and Food Chemistry, 2015, 63, 9188-9198.	5. 2	42
15	Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 2018, 258, 284-294.	8.2	41
16	Identification and characterisation of the phenolics of Ilex glabra L. Gray (Aquifoliaceae) leaves by liquid chromatography tandem mass spectrometry. Phytochemistry, 2014, 106, 141-155.	2.9	35
17	Model system-based mechanistic studies of black tea thearubigin formation. Food Chemistry, 2015, 180, 272-279.	8.2	34
18	Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans. Food Research International, 2016, 90, 53-65.	6.2	33

#	Article	IF	CITATIONS
19	An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry. Foods, 2014, 3, 461-475.	4.3	31
20	Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Research International, 2019, 126, 108544.	6.2	31
21	Experimentally modelling cocoa bean fermentation reveals key factors and their influences. Food Chemistry, 2020, 302, 125335.	8.2	31
22	Herbal drugs from Sudan: Traditional uses and phytoconstituents. Pharmacognosy Reviews, 2017, 11, 83.	1.2	31
23	Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Research International, 2016, 89, 764-772.	6.2	30
24	Investigation of the Photochemical Changes of Chlorogenic Acids Induced by Ultraviolet Light in Model Systems and in Agricultural Practice with <i>Stevia rebaudiana</i> Cultivation as an Example. Journal of Agricultural and Food Chemistry, 2015, 63, 3338-3347.	5.2	27
25	Variation of triacylglycerol profiles in unfermented and dried fermented cocoa beans of different origins. Food Research International, 2018, 111, 361-370.	6.2	24
26	Differentiation of prototropic ions in regioisomeric caffeoyl quinic acids by electrospray ion mobility mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 675-680.	1.5	21
27	Metabolome Comparison of Bioactive and Inactive <i>Rhododendron</i> Extracts and Identification of an Antibacterial Cannabinoid(s) from <i>Rhododendron collettianum</i> Phytochemical Analysis, 2017, 28, 454-464.	2.4	21
28	Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 2019, 121, 217-228.	6.2	21
29	Development of a novel direct-infusion atmospheric pressure chemical ionization mass spectrometry method for the analysis of heavy hydrocarbons in light shredder waste. Analytical Methods, 2012, 4, 730.	2.7	20
30	Fourier transform ion cyclotron resonance mass spectrometrical analysis of raw fermented cocoa beans of Cameroon and Ivory Coast origin. Food Research International, 2014, 64, 958-961.	6.2	20
31	Synthesis, Structure, and Tandem Mass Spectrometric Characterization of the Diastereomers of Quinic Acid. Journal of Agricultural and Food Chemistry, 2016, 64, 7298-7306.	5.2	20
32	Characterization of triacylglycerols in unfermented cocoa beans by HPLC-ESI mass spectrometry. Food Chemistry, 2018, 254, 232-240.	8.2	20
33	Changes in low molecular weight carbohydrates in kale during development and acclimation to cold temperatures determined by chromatographic techniques coupled to mass spectrometry. Food Research International, 2020, 127, 108727.	6.2	18
34	Classification of Brazilian roasted coffees from different geographical origins and farming practices based on chlorogenic acid profiles. Food Research International, 2020, 134, 109218.	6.2	18
35	Novel Amadori and Heyns compounds derived from short peptides found in dried cocoa beans. Food Research International, 2020, 133, 109164.	6.2	18
36	Determination of hydroxycinnamic acids present in Rhododendron species. Phytochemistry, 2017, 144, 216-225.	2.9	16

#	Article	IF	CITATIONS
37	Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Research International, 2020, 133, 109122.	6.2	16
38	Analysis of minor low molecular weight carbohydrates in cocoa beans by chromatographic techniques coupled to mass spectrometry. Journal of Chromatography A, 2019, 1584, 135-143.	3.7	15
39	Heat induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemistry, 2021, 357, 129621.	8.2	13
40	Quantification of microbial uptake of quercetin and its derivatives using an UHPLC-ESI-QTOF mass spectrometry assay. Food and Function, 2016, 7, 4082-4091.	4.6	12
41	Hill coefficients of dietary polyphenolic enzyme inhibitiors: can beneficial health effects of dietary polyphenols be explained by allosteric enzyme denaturing?. Journal of Chemical Biology, 2011, 4, 109-116.	2.2	11
42	Characterization of commercial green tea leaves by the analysis of low molecular weight carbohydrates and other quality indicators. Food Chemistry, 2019, 290, 159-167.	8.2	11
43	Tea and coffee time with bacteria – Investigation of uptake of key coffee and tea phenolics by wild type E. coli. Food Research International, 2018, 108, 584-594.	6.2	10
44	Monitoring the changes in low molecular weight carbohydrates in cocoa beans during spontaneous fermentation: A chemometric and kinetic approach. Food Research International, 2020, 128, 108865.	6.2	10
45	Profiling and Quantification of Regioisomeric Caffeoyl Glucoses in Berry Fruits. Journal of Agricultural and Food Chemistry, 2018, 66, 1096-1104.	5.2	9
46	Identification of Products from Thermal Degradation of Tryptophan Containing Pentapeptides: Oxidation and Decarboxylation. Journal of Agricultural and Food Chemistry, 2019, 67, 7448-7454.	5.2	9
47	One Size Does Not Fit All—Bacterial Cell Death by Antibiotics Cannot Be Explained by the Action of Reactive Oxygen Species. Angewandte Chemie - International Edition, 2013, 52, 10946-10948.	13.8	7
48	Investigating time dependent cocoa bean fermentation by ESI-FT-ICR mass spectrometry. Food Research International, 2020, 133, 109209.	6.2	7
49	Cocoa origin classifiability through LC-MS data: A statistical approach for large and long-term datasets. Food Research International, 2021, 140, 109983.	6.2	7
50	LC–MS Characterization and Quantification of Known and Unknown (Poly)phenol Metabolites—Possible Pitfalls and Their Avoidance. Molecular Nutrition and Food Research, 2022, 66, e2101013.	3.3	7
51	Energy resolved mass spectrometry of chlorogenic acids and its application to isomer quantification by direct infusion tandem mass spectrometry. Phytochemical Analysis, 2018, 29, 406-412.	2.4	6
52	A Practitioner's Dilemma Mass Spectrometryâ€Based Annotation and Identification of Human Plasma and Urinary Polyphenol Metabolites. Molecular Nutrition and Food Research, 2022, 66, e2100985.	3.3	6
53	Investigating the interaction between dietary polyphenols, the SARS CoV-2 spike protein and the ACE-2 receptor. Food and Function, 2022, 13, 8038-8046.	4.6	6
54	Synthesis, selfâ€association and chiroselectivity of isotopically labeled trianglamine macrocycles in the ion trap mass spectrometer. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 1215-1223.	1.0	5

#	Article	IF	CITATIONS
55	LC-MS n study of the chemical transformations of hydroxycinnamates during yerba maté (llex) Tj ETQq1 1 0.78	4314 rgB1	Γ <u>f</u> Overlock
56	Different Shades of Kaleâ€"Approaches to Analyze Kale Variety Interrelations. Genes, 2022, 13, 232.	2.4	4
57	Discrete, Cationic Palladium(II)â€Oxo Clusters viaÂfâ€Metal Ion Incorporation and their Macrocyclic Hostâ€Guest Interactions with Sulfonatocalixarenes. Angewandte Chemie, 0, , .	2.0	4
58	HPLC-MS-based design of experiments approach on cocoa roasting. Food Chemistry, 2021, 360, 129694.	8.2	3
59	Profiling and quantification of regioisomeric caffeoyl glucoses in Solanaceae vegetables. Food Chemistry, 2017, 237, 659-666.	8.2	3
60	Cocoa bean fingerprinting via correlation networks. Npj Science of Food, 2022, 6, 5.	5.5	3
61	"Thermal Peroxidation―of Dietary Pentapeptides Yields N-Terminal 1,2-Dicarbonyls. Frontiers in Nutrition, 2021, 8, 663233.	3.7	O