Murali Sastry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5297022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta) Tj ETQq1	1 0.784314 9.4	1 rgBT /Over
2	Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnology Progress, 2006, 22, 577-583.	2.6	1,674
3	Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 2003, 28, 313-318.	5.0	1,505
4	Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 2005, 21, 10644-10654.	3.5	1,479
5	Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3, 482-488.	27.5	1,409
6	Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters, 2001, 1, 515-519.	9.1	1,181
7	Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnology Progress, 2003, 19, 1627-1631.	2.6	935
8	Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 2003, 13, 1822.	6.7	838
9	Bioreduction of AuCl4â [~] ' Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance Angewandte Chemie - International Edition, 2001, 40, 3585.	13.8	768
10	Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete,Thermomonosporasp Langmuir, 2003, 19, 3550-3553.	3.5	684
11	Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 2000, 358, 122-130.	1.8	663
12	Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete,Rhodococcusspecies. Nanotechnology, 2003, 14, 824-828.	2.6	618
13	Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings. Chemistry of Materials, 2005, 17, 566-572.	6.7	563
14	Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. ChemBioChem, 2002, 3, 461.	2.6	560
15	Biosynthesis of Gold and Silver Nanoparticles Using <i>Emblica Officinalis</i> Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. Journal of Nanoscience and Nanotechnology, 2005, 5, 1665-1671.	0.9	536
16	Chitosan Reduced Gold Nanoparticles as Novel Carriers for Transmucosal Delivery of Insulin. Pharmaceutical Research, 2007, 24, 1415-1426.	3.5	525
17	Pepsinâ~'Gold Colloid Conjugates:  Preparation, Characterization, and Enzymatic Activity. Langmuir, 2001, 17, 1674-1679.	3.5	514
18	Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus,Fusarium oxysporum. Journal of the American Chemical Society, 2002, 124, 12108-12109.	13.7	509

#	Article	lF	CITATIONS
19	Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles. Langmuir, 2003, 19, 6277-6282.	3.5	469
20	Extracellular Biosynthesis of Bimetallic Au-Ag Alloy Nanoparticles. Small, 2005, 1, 517-520.	10.0	417
21	Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2005, 35, 19-26.	0.6	412
22	Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir, 2006, 22, 736-741.	3.5	393
23	Extracellular Biosynthesis of Magnetite using Fungi. Small, 2006, 2, 135-141.	10.0	389
24	Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. Journal of Materials Chemistry, 2004, 14, 3303.	6.7	375
25	Fungus-mediated biosynthesis of silica and titania particles. Journal of Materials Chemistry, 2005, 15, 2583.	6.7	354
26	Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite: Excellent Catalysts for Hydrogenation and Heck Reactions. Chemistry of Materials, 2004, 16, 3714-3724.	6.7	351
27	Synthesis of Aqueous Au Coreâ^'Ag Shell Nanoparticles Using Tyrosine as a pH-Dependent Reducing Agent and Assembling Phase-Transferred Silver Nanoparticles at the Airâ^'Water Interface. Langmuir, 2004, 20, 7825-7836.	3.5	334
28	Capping of Gold Nanoparticles by the Amino Acid Lysine Renders Them Water-Dispersible. Langmuir, 2003, 19, 3545-3549.	3.5	292
29	Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. Journal of the American Chemical Society, 2006, 128, 11958-11963.	13.7	285
30	Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. Journal of Colloid and Interface Science, 2004, 269, 97-102.	9.4	277
31	Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, <i>Trichothecium</i> sp Journal of Biomedical Nanotechnology, 2005, 1, 47-53.	1.1	273
32	Green luminescence from copper doped zinc sulphide quantum particles. Applied Physics Letters, 1995, 67, 2702-2704.	3.3	266
33	Extracellular Synthesis of Crystalline Silver Nanoparticles and Molecular Evidence of Silver Resistance from <i>Morganella</i> sp.: Towards Understanding Biochemical Synthesis Mechanism. ChemBioChem, 2008, 9, 1415-1422.	2.6	261
34	Keggin Ions as UV-Switchable Reducing Agents in the Synthesis of Au Coreâ^'Ag Shell Nanoparticles. Journal of the American Chemical Society, 2003, 125, 8440-8441.	13.7	230
35	Studies on the Reversible Aggregation of Cysteine-Capped Colloidal Silver Particles Interconnected via Hydrogen Bonds. Langmuir, 2001, 17, 6262-6268.	3.5	220
36	pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 221-228.	4.7	216

#	Article	IF	CITATIONS
37	Gold Nanoparticles as Carriers for Efficient Transmucosal Insulin Delivery. Langmuir, 2006, 22, 300-305.	3.5	208
38	Interfacing biology with nanoparticles. Current Applied Physics, 2005, 5, 118-127.	2.4	207
39	Electrostatically Controlled Diffusion of Carboxylic Acid Derivatized Silver Colloidal Particles in Thermally Evaporated Fatty Amine Films. Journal of Physical Chemistry B, 1998, 102, 1404-1410.	2.6	195
40	Bacterial Aerobic Synthesis of Nanocrystalline Magnetite. Journal of the American Chemical Society, 2005, 127, 9326-9327.	13.7	190
41	Electrostatic Assembly of Nanoparticles and Biomacromolecules. Accounts of Chemical Research, 2002, 35, 847-855.	15.6	184
42	Bacteria-Mediated Precursor-Dependent Biosynthesis of Superparamagnetic Iron Oxide and Iron Sulfide Nanoparticles. Langmuir, 2008, 24, 5787-5794.	3.5	184
43	Fungus-Mediated Biotransformation of Amorphous Silica in Rice Husk to Nanocrystalline Silica. Journal of the American Chemical Society, 2006, 128, 14059-14066.	13.7	182
44	Interaction of Different Metal Ions with Carboxylic Acid Group:  A Quantitative Study. Journal of Physical Chemistry A, 2007, 111, 6183-6190.	2.5	173
45	Direct Assembly of Gold Nanoparticle "Shells―on Polyurethane Microsphere "Cores―and Their Application as Enzyme Immobilization Templates. Chemistry of Materials, 2003, 15, 1944-1949.	6.7	170
46	Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. Journal of Materials Chemistry, 2005, 15, 5115.	6.7	168
47	On the Stability of Carboxylic Acid Derivatized Gold Colloidal Particles:  The Role of Colloidal Solution pH Studied by Optical Absorption Spectroscopy. Langmuir, 1997, 13, 3944-3947.	3.5	156
48	Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. Journal of Colloid and Interface Science, 2003, 264, 396-401.	9.4	156
49	Linear Superclusters of Colloidal Gold Particles by Electrostatic Assembly on DNA Templates. Advanced Materials, 2001, 13, 341-344.	21.0	150
50	Isothermal Titration Calorimetry Studies on the Binding of Amino Acids to Gold Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 11535-11540.	2.6	146
51	On the Preparation, Characterization, and Enzymatic Activity of Fungal Proteaseâ^'Gold Colloid Bioconjugates. Bioconjugate Chemistry, 2001, 12, 684-690.	3.6	133
52	Isothermal Titration Calorimetry Studies on the Binding of DNA Bases and PNA Base Monomers to Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126, 13186-13187.	13.7	130
53	Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chemical Communications, 2005, , 1684.	4.1	127
54	Formation of Water-Dispersible Gold Nanoparticles Using a Technique Based on Surface-Bound Interdigitated Bilayers. Langmuir, 2003, 19, 1168-1172.	3.5	124

#	Article	IF	CITATIONS
55	Evidence for Novel Interdigitated Bilayer Formation of Fatty Acids during Three-Dimensional Self-Assembly on Silver Colloidal Particles. Journal of the American Chemical Society, 1997, 119, 9281-9282.	13.7	120
56	Langmuirâ^'Blodgett Films of Carboxylic Acid Derivatized Silver Colloidal Particles:Â Role of Subphase pH on Degree of Cluster Incorporation. Journal of Physical Chemistry B, 1997, 101, 4954-4958.	2.6	117
57	Role of Particle Size in Individual and Competitive Diffusion of Carboxylic Acid Derivatized Colloidal Gold Particles in Thermally Evaporated Fatty Amine Films. Langmuir, 1999, 15, 8197-8206.	3.5	115
58	Benzene- and Anthracene-Mediated Assembly of Gold Nanoparticles at the Liquidâ^'Liquid Interface. Langmuir, 2002, 18, 6478-6483.	3.5	108
59	Biosynthesis of CaCO3Crystals of Complex Morphology Using a Fungus and an Actinomycete. Journal of the American Chemical Society, 2003, 125, 14656-14657.	13.7	108
60	Characterization and Catalytic Activity of Gold Nanoparticles Synthesized by Autoreduction of Aqueous Chloroaurate lons with Fumed Silica. Chemistry of Materials, 2002, 14, 1678-1684.	6.7	107
61	Electrostatically Controlled Organization of Carboxylic Acid Derivatized Colloidal Silver Particles on Amine-Terminated Self-Assembled Monolayers. Chemistry of Materials, 2000, 12, 1234-1239.	6.7	104
62	Porous Gold Nanospheres by Controlled Transmetalation Reaction: A Novel Material for Application in Cell Imaging. Chemistry of Materials, 2005, 17, 5000-5005.	6.7	100
63	Adsorption of Silver Colloidal Particles through Covalent Linkage to Self-Assembled Monolayers. Langmuir, 1997, 13, 5244-5248.	3.5	98
64	Synthesis of Gold Nanospheres and Nanotriangles by the Turkevich Approach. Journal of Nanoscience and Nanotechnology, 2005, 5, 1721-1727.	0.9	97
65	Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Journal of Chemical Sciences, 2002, 114, 513-520.	1.5	96
66	Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous and Mesoporous Materials, 2003, 58, 201-211.	4.4	96
67	Biological Synthesis of Strontium Carbonate Crystals Using the FungusFusarium oxysporum. Langmuir, 2004, 20, 6827-6833.	3.5	96
68	Optical Absorption Study of the Biotinâ^'Avidin Interaction on Colloidal Silver and Gold Particles. Langmuir, 1998, 14, 4138-4142.	3.5	95
69	One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid–liquid interface. Chemical Communications, 2002, , 1334-1335.	4.1	92
70	Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181, 255-259.	4.7	91
71	Gold Nanoparticles Assembled on Amine-Functionalized Naâ^Y Zeolite:Â A Biocompatible Surface for Enzyme Immobilization. Langmuir, 2003, 19, 3858-3863.	3.5	90
72	Phase Transfer of Aqueous Gold Colloidal Particles Capped with Inclusion Complexes of Cyclodextrin and Alkanethiol Molecules into Chloroform. Langmuir, 2001, 17, 3766-3768.	3.5	89

#	Article	IF	CITATIONS
73	Gold Nanoparticle Networks with Photoresponsive Interparticle Spacings. Langmuir, 2005, 21, 7979-7984.	3.5	87
74	One-Step Synthesis of Ordered Two-Dimensional Assemblies of Silver Nanoparticles by the Spontaneous Reduction of Silver Ions by Pentadecylphenol Langmuir Monolayers. Journal of Physical Chemistry B, 2004, 108, 19269-19275.	2.6	86
75	Lamellar Multilayer Gold Cluster Films Deposited by the Langmuirâ^'Blodgett Technique. Langmuir, 1997, 13, 2575-2577.	3.5	85
76	Palladium clusters on graphite: Evidence of resonant hybrid states in the valence and conduction bands. Physical Review B, 1990, 41, 5685-5695.	3.2	83
77	DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure. Applied Physics Letters, 2001, 78, 2943-2945.	3.3	81
78	Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core–shell nanoparticles. Journal of Materials Chemistry, 2004, 14, 2868-2871.	6.7	80
79	Highly Oriented Gold Nanoribbons by the Reduction of Aqueous Chloroaurate Ions by Hexadecylaniline Langmuir Monolayers. Chemistry of Materials, 2003, 15, 17-19.	6.7	79
80	Sequential Electrostatic Assembly of Amine-Derivatized Gold and Carboxylic Acid-Derivatized Silver Colloidal Particles on Glass Substrates. Langmuir, 2000, 16, 6921-6926.	3.5	76
81	Heavy-Metal Remediation by a Fungus as a Means of Production of Lead and Cadmium Carbonate Crystals. Langmuir, 2005, 21, 7220-7224.	3.5	76
82	Spider Silk as an Active Scaffold in the Assembly of Gold Nanoparticles and Application of the Gold–Silk Bioconjugate in Vapor Sensing. Small, 2007, 3, 466-473.	10.0	74
83	Cobalt and Magnesium Ferrite Nanoparticles:Â Preparation Using Liquid Foams as Templates and Their Magnetic Characteristics. Langmuir, 2005, 21, 10638-10643.	3.5	72
84	Synthesis of triangular Au core–Ag shell nanoparticles. Materials Research Bulletin, 2007, 42, 1212-1220.	5.2	71
85	A New Technique for the Spontaneous Growth of Colloidal Nanoparticle Superlattices. Langmuir, 1999, 15, 1902-1904.	3.5	70
86	Bioleaching of Sand by the FungusFusarium oxysporum as a Means of Producing Extracellular Silica Nanoparticles. Advanced Materials, 2005, 17, 889-892.	21.0	70
87	New approaches to the synthesis of anisotropic, core–shell and hollow metal nanostructures. Journal of Materials Chemistry, 2005, 15, 3161.	6.7	69
88	Probing differential Ag+–nucleobase interactions with isothermal titration calorimetry (ITC): Towards patterned DNA metallization. Nanoscale, 2009, 1, 122.	5.6	68
89	Ag+–Keggin ion colloidal particles as novel templates for the growth of silver nanoparticle assemblies. Journal of Materials Chemistry, 2003, 13, 3002-3005.	6.7	67
90	A facile liquid foam based synthesis of nickel nanoparticles and their subsequent conversion to NicoreAgshell particles: structural characterization and investigation of magnetic properties. Journal of Materials Chemistry, 2004, 14, 2941.	6.7	65

#	Article	IF	CITATIONS
91	Amphoterization of Colloidal Gold Particles by Capping with Valine Molecules and Their Phase Transfer from Water to Toluene by Electrostatic Coordination with Fatty Amine Molecules. Langmuir, 2000, 16, 9775-9783.	3.5	64
92	Deposition of thin films of TiO2from Langmuir–Blodgett film precursors. Applied Physics Letters, 1993, 63, 18-20.	3.3	62
93	Foam-based synthesis of cobalt nanoparticles and their subsequent conversion to CocoreAgshell nanoparticles by a simple transmetallation reaction. Journal of Materials Chemistry, 2004, 14, 1057.	6.7	61
94	Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chemical Communications, 2000, , 297-298.	4.1	59
95	Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres. Biotechnology and Bioengineering, 2004, 85, 629-637.	3.3	58
96	Synthesis of Hydroxyapatite Crystals Using Amino Acid-Capped Gold Nanoparticles as a Scaffold. Langmuir, 2005, 21, 5185-5191.	3.5	58
97	Bacterial synthesis of silicon/silica nanocomposites. Journal of Materials Chemistry, 2008, 18, 2601.	6.7	57
98	Growth of Calcium Carbonate Crystals within Fatty Acid Bilayer Stacks. Langmuir, 2002, 18, 6075-6080.	3.5	56
99	Fabrication, Characterization, and Enzymatic Activity of Encapsulated Fungal Proteaseâ^'Fatty Lipid Biocomposite Films. Analytical Chemistry, 2000, 72, 4301-4309.	6.5	54
100	Preparation of Nearly Monodisperse Nickel Nanoparticles by a Facile Solution Based Methodology and Their Ordered Assemblies. Journal of Physical Chemistry C, 2009, 113, 3426-3429.	3.1	54
101	Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnology, Science and Applications, 2021, Volume 14, 197-220.	4.6	54
102	Microbial Nanoparticle Production. , 2005, , 126-135.		53
103	Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloids and Surfaces B: Biointerfaces, 2002, 25, 129-138.	5.0	52
104	Keggin Ion Mediated Synthesis of Hydrophobized Pd Nanoparticles for Multifunctional Catalysis. Langmuir, 2005, 21, 2408-2413.	3.5	52
105	Zirconia Enrichment in Zircon Sand by Selective Fungus-Mediated Bioleaching of Silica. Langmuir, 2007, 23, 4993-4998.	3.5	52
106	SrCO3Crystals of Ribbonlike Morphology Grown within Thermally Evaporated Sodium Bis-2-ethylhexylsulfosuccinate Thin Films. Langmuir, 2003, 19, 888-892.	3.5	50
107	Biological synthesis of metal carbonate minerals using fungi and actinomycetes. Journal of Materials Chemistry, 2004, 14, 2333.	6.7	50
108	Bacterial Enzyme Mediated Biosynthesis of Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 4369-4377.	0.9	49

#	Article	IF	CITATIONS
109	Solvent-Adaptable Silver Nanoparticles. Langmuir, 2005, 21, 822-826.	3.5	48
110	Synthesis of Ag/Pd Nanoparticles and Their Low-Temperature Alloying within Thermally Evaporated Fatty Acid Films. Journal of Physical Chemistry B, 2002, 106, 297-302.	2.6	47
111	Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates. Bulletin of Materials Science, 2005, 28, 503-510.	1.7	46
112	Effect of halogen addition to monolayer protected gold nanoparticles. Journal of Materials Chemistry, 2007, 17, 1614.	6.7	46
113	Spontaneous Self-Organization via Cation Exchange in Fatty Acid Films Immersed in Aqueous Media. Langmuir, 1995, 11, 1078-1080.	3.5	45
114	Use of aqueous foams for the synthesis of gold nanoparticles of variable morphology. Journal of Materials Chemistry, 2004, 14, 43.	6.7	45
115	Phase Transfer of Aqueous CdS Nanoparticles by Coordination with Octadecanethiol Molecules Present in Nonpolar Organic Solvents. Langmuir, 2000, 16, 9299-9302.	3.5	44
116	Hybridization of DNA by Sequential Immobilization of Oligonucleotides at the Airâ `Water Interface. Langmuir, 2000, 16, 9142-9146.	3.5	43
117	Phase transfer of oleic acid capped NicoreAgshell nanoparticles assisted by the flexibility of oleic acid on the surface of silver. Journal of Colloid and Interface Science, 2005, 283, 422-431.	9.4	43
118	Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing. Nanotechnology, 2006, 17, 2399-2405.	2.6	43
119	Formation of a Redox Active Self-Assembled Monolayer:  Naphtho[1,8-cd]-1,2-dithiol on Gold. Langmuir, 1997, 13, 866-869.	3.5	42
120	Time-dependent complexation of glucose-reduced gold nanoparticles with octadecylamine Langmuir monolayers. Journal of Colloid and Interface Science, 2004, 270, 133-139.	9.4	42
121	Novel structure of Langmuir-Blodgett films of chloroplatinic acid using n-octadecylamine: evidence for interdigitation of hydrocarbon chains. Journal of the American Chemical Society, 1993, 115, 793-794.	13.7	41
122	Synthesis of Catalytically Active Porous Platinum Nanoparticles by Transmetallation Reaction and Proposition of the Mechanism. Small, 2009, 5, 1467-1473.	10.0	39
123	Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films. Journal of Colloid and Interface Science, 2004, 274, 69-75.	9.4	38
124	Free-Standing Nanogold Membranes as Scaffolds for Enzyme Immobilization. Langmuir, 2004, 20, 3717-3723.	3.5	38
125	Synthesis and Assembly of CdS Nanoparticles in Keggin Ion Colloidal Particles as Templates. Journal of Physical Chemistry B, 2004, 108, 7126-7131.	2.6	38
126	Synthesis of Au-Core/Pt-Shell Nanoparticles within Thermally Evaporated Fatty Amine Films and Their Low-Temperature Alloying. Langmuir, 2001, 17, 7156-7159.	3.5	37

#	Article	IF	CITATIONS
127	Morphology of BaSO4 Crystals Grown on Templates of Varying Dimensionality:  The Case of Cysteine-Capped Gold Nanoparticles (0-D), DNA (1-D), and Lipid Bilayer Stacks (2-D). Crystal Growth and Design, 2002, 2, 197-203.	3.0	37
128	On the deposition of Langmuir-Blodgett films of Q-state CdS nanoparticles through electrostatic immobilization at the air-water interface. Thin Solid Films, 1998, 312, 300-305.	1.8	36
129	Langmuir–Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air–water interface. Journal of Colloid and Interface Science, 2003, 260, 367-373.	9.4	36
130	Incorporation of Colloidal Metal Particles in Thermally Evaporated Fatty Amine Films via Selective Electrostatic Interactions. Langmuir, 1997, 13, 4490-4492.	3.5	35
131	Variation in morphology of gold nanoparticles synthesized by the spontaneous reduction of aqueous chloroaurate ions by alkylated tyrosine at a liquid–liquid and air–water interface. Journal of Materials Chemistry, 2004, 14, 2696.	6.7	35
132	Synthesis and structural characterization of nanocrystalline aluminium oxide. Materials Chemistry and Physics, 1994, 36, 354-358.	4.0	34
133	Organization of polymer-capped platinum colloidal particles at the air–water interface. Thin Solid Films, 1998, 324, 239-244.	1.8	34
134	Size separation of colloidal nanoparticles using a miniscale isoelectric focusing technique. Journal of Chromatography A, 1999, 848, 485-490.	3.7	34
135	Enhanced Temperature and pH Stability of Fatty Amineâ^ Endoglucanase Composites:  Fabrication, Substrate Protection, and Biological Activity. Langmuir, 2001, 17, 5964-5970.	3.5	34
136	A new method for the synthesis of hydrophobized, catalytically active Pt nanoparticles. Chemical Communications, 2002, , 3002-3003.	4.1	34
137	Time-Dependent Complexation of Cysteine-Capped Gold Nanoparticles with Octadecylamine Langmuir Monolayers at the Airâ^'Water Interface. Langmuir, 2003, 19, 9147-9154.	3.5	34
138	Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. Journal of Chemical Sciences, 2004, 116, 293-300.	1.5	34
139	Aqueous Foams as Templates for the Synthesis of Calcite Crystal Assemblies of Spherical Morphology. Chemistry of Materials, 2004, 16, 1356-1361.	6.7	34
140	Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media. Journal of Colloid and Interface Science, 2007, 312, 498-505.	9.4	34
141	Halide ion controlled shape dependent gold nanoparticle synthesis with tryptophan as reducing agent: Enhanced fluorescent properties and white light emission. Chemical Physics Letters, 2010, 484, 271-275.	2.6	34
142	One Pot, Spontaneous and Simultaneous Synthesis of Gold Nanoparticles in Aqueous and Nonpolar Organic Solvents Using a Diamine-Containing Oxyethylene Linkage. Langmuir, 2004, 20, 295-298.	3.5	33
143	Lamellar Langmuir–Blodgett films of hydrophobized colloidal gold nanoparticles by organization at the air–water interface. Thin Solid Films, 2001, 384, 125-131.	1.8	31
144	Electrostatic Complexation of Carboxylic Acid Derivatized Silver Colloidal Particles with Fatty Amine Langmuir Monolayers. Role of Neutral Spacer Molecules in the Monolayer. Langmuir, 1998, 14, 74-78.	3.5	29

#	Article	IF	CITATIONS
145	Gold nanosheets via reduction of aqueous chloroaurate ions by anthracene anions bound to a liquid–liquid interface. Chemical Communications, 2003, , 1236-1237.	4.1	29
146	Ultra-low level optical detection of mercuric ions using biogenic gold nanotriangles. Analyst, The, 2012, 137, 3083.	3.5	28
147	Structural studies on silver cluster films deposited on softened PVP substrates. Thin Solid Films, 1999, 338, 40-45.	1.8	27
148	Formation of Patterned, Heterocolloidal Nanoparticle Thin Films. Langmuir, 2000, 16, 3553-3556.	3.5	27
149	Hydrophobic, organically dispersible gold nanoparticles of variable shape produced by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules. Journal of Colloid and Interface Science, 2004, 279, 124-131.	9.4	27
150	Selective Binding of Divalent Cations at the Surface of Self-Assembled Monolayers of an Aromatic Bifunctional Molecule Studied on a Quartz Crystal Microbalance. Journal of Physical Chemistry B, 1997, 101, 1167-1170.	2.6	26
151	Studies on the Formation of DNAâ^'Cationic Lipid Composite Films and DNA Hybridization in the Composites. Journal of Physical Chemistry B, 2001, 105, 4409-4414.	2.6	26
152	Surface Derivatization of Colloidal Silver Particles Using Interdigitated Bilayers: A Novel Strategy for Electrostatic Immobilization of Colloidal Particles in Thermally Evaporated Fatty Acid/Fatty Amine Films. Langmuir, 1998, 14, 2707-2711.	3.5	25
153	Multilayer Langmuir–Blodgett assemblies of hydrophobized CdS nanoparticles by organization at the air–water interface. Journal of Materials Chemistry, 2000, 10, 1389-1393.	6.7	25
154	Ca2+â^'Keggin Anion Colloidal Particles as Templates for the Growth of Star-Shaped Calcite Crystal Assemblies. Langmuir, 2003, 19, 10095-10099.	3.5	25
155	A Study of the Partitioning of Colloidal Particles Based on Their Size during Electrostatic Immobilization at the Airâ Water Interface Using Fatty Amine Monolayers. Journal of Physical Chemistry B, 1997, 101, 9790-9793.	2.6	24
156	Flat gold nanostructures by the reduction of chloroaurate ions constrained to a monolayer at the air–water interface. Journal of Materials Chemistry, 2004, 14, 709-714.	6.7	24
157	Biological Synthesis of Stable Vaterite Crystals by the Reaction of Calcium Ions with Germinating Chickpea Seeds. Crystal Growth and Design, 2005, 5, 399-402.	3.0	24
158	Studies on the deposition of titanyl oxalate ions using long-chain hydrocarbon amines. Langmuir, 1993, 9, 577-579.	3.5	23
159	Effect of Geometric Constraints on the Self-Assembled Monolayer Formation of Aromatic Disulfides on Polycrystalline Gold. Langmuir, 1998, 14, 3808-3814.	3.5	23
160	Influence of colloidal subphase pH on the deposition of multilayer Langmuir–Blodgett films of gold clusters. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3377-3381.	1.7	21
161	Determination of C 1s Core Level Chemical Shifts in Some Langmuirâ ^{~,} Blodgett Films Using a Modified Sanderson Formalism. Journal of Physical Chemistry A, 1998, 102, 697-702.	2.5	21
162	Low temperature crystalline Ag–Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film. Applied Physics Letters, 2001, 79, 3314-3316.	3.3	21

#	Article	IF	CITATIONS
163	Photomodulated Spatially Confined Chemical Reactivity in a Single Silver Nanoprism. ACS Nano, 2020, 14, 11100-11109.	14.6	21
164	Deposition of yttrium ions in Langmuir-Blodgett films using arachidic acid. Langmuir, 1993, 9, 487-490.	3.5	20
165	A new method for the generation of patterned protein films by encapsulation in arrays of thermally evaporated lipids. Biotechnology and Bioengineering, 2001, 74, 172-178.	3.3	20
166	Entrapment of proteins and DNA in thermally evaporated lipid films. Trends in Biotechnology, 2002, 20, 185-188.	9.3	20
167	Liquid Foam as a Template for the Synthesis of Iron Oxyhydroxide Nanoparticles. Langmuir, 2004, 20, 8853-8857.	3.5	20
168	PNAâ^'DNA Hybridization at the Airâ^'Water Interface in the Presence of Octadecylamine Langmuir Monolayers. Langmuir, 2002, 18, 6307-6311.	3.5	19
169	Effect of salt on the hybridization of DNA by sequential immobilization of oligonucleotides at the air-water interface in the presence of ODA/DOTAP monolayers. Journal of Colloid and Interface Science, 2004, 276, 77-84.	9.4	19
170	Preparation and characterisation of silver particulate films on softened polystyrene substrates. Thin Solid Films, 1997, 310, 97-101.	1.8	18
171	Protein-Friendly Intercalation of Cytochrome c and Hemoglobin into Thermally Evaporated Anionic and Cationic Lipid Films: A New Approach Based on Diffusion from Solution. Langmuir, 2001, 17, 5646-5656.	3.5	18
172	Electrostatically entrapped DNA molecules in lipid thin films as templates for thein situgrowth of silver nanoparticles. Nanotechnology, 2002, 13, 597-600.	2.6	18
173	Biotinylation of colloidal gold particles using interdigitated bilayers: a UV–visible spectroscopy and TEM study of the biotin–avidin molecular recognition process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 205, 15-20.	4.7	18
174	Au and Au-Pt bimetallic nanoparticles in M CM-41 materials: applications in co preferential oxidation. Studies in Surface Science and Catalysis, 2003, , 573-576.	1.5	18
175	Highly Versatile Free-Standing Nano-Gold Membranes as Scaffolds for the Growth of Calcium Carbonate Crystals. Chemistry of Materials, 2004, 16, 988-993.	6.7	18
176	Invertase-Lipid Biocomposite Films: Preparation, Characterization, and Enzymatic Activity. Biotechnology Progress, 2008, 20, 156-161.	2.6	18
177	Facile Surface Modification of Colloidal Particles Using Bilayer Surfactant Assemblies:Â A New Strategy for Electrostatic Complexation in Langmuirâ 'Blodgett Films. Langmuir, 1998, 14, 5921-5928.	3.5	17
178	Controlling the assembly of hydrophobized gold nanoparticles at the air–water interface by varying the interfacial tension. Thin Solid Films, 2010, 519, 1072-1077.	1.8	17
179	Energy dependence of the electron attenuation length in lead arachidate Langmuir-Blodgett films. Physical Review B, 1992, 45, 9320-9326.	3.2	16
180	Intercolloidal Particle Monolayer Transfer in Mixed Metal Colloids. Langmuir, 1998, 14, 6344-6346.	3.5	16

#	Article	IF	CITATIONS
181	A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers. Bulletin of Materials Science, 2000, 23, 159-163.	1.7	16
182	Formation of Close-Packed Silver Nanoparticle Multilayers from Electrostatically Grown Octadecylamine/Colloid Nanocomposite Precursors. Langmuir, 2000, 16, 2207-2212.	3.5	16
183	Electrostatic entrapment of chloroaurate ions in patterned lipid films and thein situformation of gold nanoparticles. Nanotechnology, 2001, 12, 358-362.	2.6	16
184	Thermally Evaporated Aerosol OT Thin Films as Templates for the Room Temperature Synthesis of Aragonite Crystals. Chemistry of Materials, 2003, 15, 2809-2814.	6.7	16
185	Enhancing the Reusability of Endoglucanase-Gold Nanoparticle Bioconjugates by Tethering to Polyurethane Microspheres. Biotechnology Progress, 2004, 20, 1840-1846.	2.6	16
186	Attenuation length measurements in cadmium arachidate Langmuir–Blodgett films. Journal of Chemical Physics, 1991, 95, 8631-8635.	3.0	15
187	Spontaneously organized molecular assembly of an aromatic organic disulfide on silver/platinum alloy surfaces: an angle dependent X-ray photoemission investigation. Journal of Electron Spectroscopy and Related Phenomena, 1997, 87, 101-107.	1.7	15
188	Entrapment and catalytic activity of gold nanoparticles in amine-functionalized MCM-41 matrices synthesized by spontaneous reduction of aqueous chloroaurate ions. PhysChemComm, 2001, 4, 24.	0.8	15
189	Low temperature alloying of Cu and Ni nanoparticles formed within thermally evaporated fatty acid films. Journal of Materials Chemistry, 2002, 12, 1860-1864.	6.7	15
190	Using the dynamic, expanding liquid–liquid interface in a Hele–Shaw cell in crystal growth and nanoparticle assembly. Faraday Discussions, 2005, 129, 205-217.	3.2	15
191	Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air–water interface. Journal of Colloid and Interface Science, 2009, 333, 380-388.	9.4	15
192	Correlation of C 1s binding energies in organic molecules with atomic charge calculated using a modified Sanderson formalism. Journal of Electron Spectroscopy and Related Phenomena, 1997, 85, 167-174.	1.7	14
193	Penicillin G Acylase-Fatty Lipid Biocomposite Films Show Excellent Catalytic Activity and Long Term Stability/Reusability. Biotechnology Progress, 2002, 18, 483-488.	2.6	14
194	Transmetalation Reaction between Hydrophobic Silver Nanoparticles and Aqueous Chloroaurate Ions at the Airâ^'Water Interface. Journal of Physical Chemistry B, 2005, 109, 19620-19626.	2.6	14
195	Assembling nanoparticles and biomacromolecules using electrostatic interactions. Pure and Applied Chemistry, 2002, 74, 1621-1630.	1.9	14
196	Unusual Partitioning of Clusters Based on Their Size during Electrostatically Controlled Diffusion of Carboxylic Acid Derivatized Colloidal Particles in Thermally Evaporated Fatty Amine Films. Langmuir, 1997, 13, 5511-5513.	3.5	13
197	An Optical Absorption Investigation of Cross-Linking of Gold Colloidal Particles with a Small Dithiol Molecule. Bulletin of the Chemical Society of Japan, 2000, 73, 1757-1761.	3.2	13
198	On the morphology of SrCO3 crystals grown at the interface between two immiscible liquids. Bulletin of Materials Science, 2003, 26, 283-288.	1.7	13

#	Article	IF	CITATIONS
199	Water-dispersible nanoparticles via interdigitation of sodium dodecylsulphate molecules in octadecylamine-capped gold nanoparticles at a liquid-liquid interface. Journal of Chemical Sciences, 2003, 115, 679-687.	1.5	12
200	Protein diffusion into thermally evaporated lipid films: role of protein charge/mass ratio. Colloids and Surfaces B: Biointerfaces, 2003, 28, 209-214.	5.0	12
201	Studies on Interaction between Similarly Charged Polyelectrolyte: Fatty Acid System. Langmuir, 2003, 19, 9321-9327.	3.5	12
202	Synthesis of CdS nanoparticles within thermally evaporated aerosol OT thin films. PhysChemComm, 2003, 6, 36.	0.8	12
203	Scanning tunneling microscopy/spectroscopy of titanium dioxide nanoparticulate film on Au() surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232, 11-17.	4.7	12
204	Cytotoxicity and Cellular Internalization Studies of Biogenic Gold Nanotriangles in Animal Cell Lines. International Journal of Green Nanotechnology, 2011, 3, 251-263.	0.3	12
205	Electronic properties of laser-deposited Bi2Sr2CaCu2O8+Î′ thin films by X-ray photoemission and X-ray auger spectroscopies. Physica C: Superconductivity and Its Applications, 1989, 159, 447-460.	1.2	11
206	Influence of alcohol on the morphology of BaSO4crystals grown at the air–water interface. CrystEngComm, 2002, 4, 626-630.	2.6	11
207	Bacterial Synthesis of Photocatalytically Active and Biocompatible TiO2and ZnO Nanoparticles. International Journal of Green Nanotechnology: Physics and Chemistry, 2010, 2, P80-P99.	1.5	11
208	Machine-Free Polymerase Chain Reaction with Triangular Gold and Silver Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 10489-10496.	4.6	11
209	Exchange of Interlamellar Cations with Its Aqueous Environment in Charged Layered Systems: Similarity between Clays and Langmuir-Blodgett Films of Metal Salts of Fatty Acids. Langmuir, 1994, 10, 1670-1672.	3.5	10
210	"Turnover―of Amphiphile Molecules in Langmuir Blodgett Films of Salts of Fatty Acids: An X-ray Diffraction Study. Langmuir, 1997, 13, 6582-6588.	3.5	10
211	Immobilization of Candida bombicola Cells on Free-Standing Organic-Gold Nanoparticle Membranes and Their Use as Enzyme Sources in Biotransformations. Biotechnology Progress, 2004, 20, 1817-1824.	2.6	10
212	Time variation of the interisland spacing at liquid nitrogen temperature for copper and silver island films. Thin Solid Films, 1988, 159, L61-L64.	1.8	9
213	Application of principal component analysis to X-ray photoelectron spectroscopy — the role of noise in the spectra. Journal of Electron Spectroscopy and Related Phenomena, 1997, 83, 143-150.	1.7	9
214	Title is missing!. Journal of Nanoparticle Research, 2000, 2, 183-190.	1.9	9
215	Nanocomposites of colloidal gold particles and fatty acids formed by the high-affinity biotin–avidin interaction. Physical Chemistry Chemical Physics, 2000, 2, 2461-2466.	2.8	9
216	Fractal gold nanostructures produced by the spontaneous reduction of chloroaurate ions in thermally evaporated hexadecylaniline thin films. Nanotechnology, 2003, 14, 878-881.	2.6	9

#	Article	IF	CITATIONS
217	BaSO4Crystals Grown at an Expanding Liquidâ^'Liquid Interface in a Radial Hele-Shaw Cell Show Spontaneous Large-Scale Assembly into Filaments. Crystal Growth and Design, 2003, 3, 449-452.	3.0	9
218	Formation of platinum nanoparticles at air–water interfaces by the spontaneous reduction of subphase chloroplatinate anions by hexadecylaniline Langmuir monolayers. Journal of Colloid and Interface Science, 2004, 271, 381-387.	9.4	9
219	Patterned silver nanoparticle films by an ion complexation process in thermally evaporated fatty acid films. Materials Research Bulletin, 2002, 37, 1613-1621.	5.2	8
220	Patterned assembly of Yarrowia lipolytica yeast cells onto thermally evaporated octadecylamine films. Colloids and Surfaces B: Biointerfaces, 2002, 25, 363-368.	5.0	8
221	A low-temperature, soft chemistry method for the synthesis of zirconia nanoparticles in thermally evaporated fatty amine thin films. Journal of Colloid and Interface Science, 2004, 269, 126-130.	9.4	8
222	Role of Mg ions in modulating the morphology and structure of CaCO3 crystals grown in aqueous foams. CrystEngComm, 2005, 7, 469.	2.6	8
223	On the application of a modified Sanderson formalism to atomic charge–C1s binding energy correlation in some aromatic molecules. Journal of Electron Spectroscopy and Related Phenomena, 1997, 85, 249-256.	1.7	7
224	Crystallization of SrCO3 within thermally evaporated fatty acid films: unusual morphology of crystal aggregates. CrystEngComm, 2001, 3, 81.	2.6	7
225	Candida bombicola Cells Immobilized on Patterned Lipid Films as Enzyme Sources for the Transformation of Arachidonic Acid to 20-HETE. Biotechnology Progress, 2003, 19, 1659-1663.	2.6	7
226	Growth of TiO2 nanoparticles in thermally evaporated fatty amine thin films by a method of ion entrapmentElectronic supplementary information (ESI) available: Fig. S1: XPS F 2p core level spectra recorded from the ODA–TiF6 composite film before (curve 1) and after hydrolysis (curve 2). See http://www.rsc.org/suppdata/jm/b3/b301314f/. Journal of Materials Chemistry, 2003, 13, 1108-1111.	6.7	7
227	Attenuation length measurements in lead arachidate Langmuir Blodgett films. Journal of Applied Physics, 1991, 70, 7073-7077.	2.5	6
228	X-ray photoemission investigation of electron beam reduction of lead(2+) in lead arachidate Langmuir-Blodgett films. Langmuir, 1992, 8, 2354-2356.	3.5	6
229	Electron energy loss and xâ€ray photoemission study of electron inelastic scattering in cadmium arachidate Langmuir Blodgett films. Journal of Chemical Physics, 1993, 98, 1737-1743.	3.0	6
230	Size discrimination of colloidal nanoparticles by thiol-functionalized MCM-41 mesoporous molecular sieves. PhysChemComm, 2000, 3, 15.	0.8	6
231	Cationic surfactant mediated hybridization and hydrophobization of DNA molecules at the liquid/liquid interface and their phase transfer. Chemical Communications, 2001, , 1434-1435.	4.1	6
232	Synthesis of nanoscale Fe-Ag alloy within thermally evaporated fatty acid films. Nanotechnology, 2002, 13, 103-107.	2.6	6
233	Intermetallic Phase Transformations during Low-Temperature Heat Treatment of Al/Ni Nanoparticles Synthesized within Thermally Evaporated Fatty Acid Films. Nano Letters, 2002, 2, 365-368.	9.1	6
234	Lamellar multilayer hexadecylaniline-modified gold nanoparticle films deposited by the Langmuir-Blodgett technique. Journal of Chemical Sciences, 2003, 115, 185-193.	1.5	6

#	Article	IF	CITATIONS
235	Synthesis of Gold Nanorods in Organic Media. Journal of Nanoscience and Nanotechnology, 2007, 7, 2808-2817.	0.9	6
236	Application of Tougaard background subtraction to Langmuir-Blodgett films. Journal of Electron Spectroscopy and Related Phenomena, 1992, 59, 243-253.	1.7	5
237	Molecular packing in Langmuir Blodgett films by core level loss spectroscopy. Journal of Chemical Physics, 1993, 99, 4799-4803.	3.0	5
238	On the deposition of thin TiO2 films from Langmuir Blodgett film precursors. An electron spectroscopy study. Journal of Electron Spectroscopy and Related Phenomena, 1994, 67, 163-172.	1.7	5
239	Glucose induced in-situ reduction of chloroaurate ions entrapped in a fatty amine film: formation of gold nanoparticle–lipid composites. PhysChemComm, 2001, 4, 92-95.	0.8	5
240	Interaction of Xylanase I with a Fatty Lipid Matrix:Â Fabrication, Characterization, and Enzymatic Activity of the Enzymeâ^'Fatty Lipid Composite Films. Langmuir, 2002, 18, 9494-9501.	3.5	5
241	Size and Shape Directed Novel Green Synthesis of Plasmonic Nanoparticles Using Bacterial Metabolites and Their Anticancer Effects. Frontiers in Microbiology, 2022, 13, 866849.	3.5	5
242	Long-Term Stability of Self-Assembled Monolayers of an Aromatic Bifunctional Molecule during Adsorption of Silver Colloidal Particles. Langmuir, 1999, 15, 6587-6590.	3.5	4
243	Morphology of BaSO4 crystals grown at the liquid?liquid interface. CrystEngComm, 2001, 3, 213.	2.6	4
244	Assembly of CdS Nanoparticles in Patterned Structures by a Novel Ion-Entrapment Process in Thermally Evaporated Fatty Acid Films. Journal of Nanoscience and Nanotechnology, 2001, 1, 281-285.	0.9	4
245	Synthesis of CdS and Alloyed CdMnS Nanocrystals Using Aqueous Foams. Journal of Nanoscience and Nanotechnology, 2005, 5, 2144-2154.	0.9	4
246	Illustration of HIV-1 Protease Folding through a Molten-Globule-like Intermediate Using an Experimental Model that Implicates I±-Crystallin and Calcium Ions. Biochemistry, 2005, 44, 3725-3734.	2.5	4
247	Assembly of Phase Transferred Nickel Nanoparticles at Air–Water Interface Using Langmuir-Blodgett Technique. Journal of Nanoscience and Nanotechnology, 2006, 6, 3736-3745.	0.9	4
248	Repeated deposition studies of the occurrence of large scale coalescence and effect of electric field on the ageing of island silver films. Vacuum, 1988, 38, 21-25.	3.5	3
249	Study of laser-deposited Bi2Sr2CaCu2O8 + δ thin films by rutherford backscattering, X-ray photoemission and X-ray Auger spectroscopies. Journal of the Less Common Metals, 1989, 151, 13-21.	0.8	3
250	Tougaard background deconvolution study of the deposition of Langmuir-Blodgett films of long-chain hydrocarbon amines with titanyl oxalate ions. Surface and Interface Analysis, 1993, 20, 815-820.	1.8	3
251	An extended scheme for calculation of atomic charges by the modified Sanderson method and application to some polycyclic organic molecules. Journal of Electron Spectroscopy and Related Phenomena, 1998, 94, 17-22.	1.7	3
252	Sequential entrapment of PNA and DNA in lipid bilayers stacks. Chemical Communications, 2001, , 2622-2623.	4.1	3

#	Article	IF	CITATIONS
253	Enhancing the Diffusion Rate of Cytochromecinto Fatty Acid Films by Preordering the Lipid Film. Langmuir, 2001, 17, 8249-8253.	3.5	3
254	NANOPARTICLE THIN FILMS: AN APPROACH BASED ON SELF-ASSEMBLY. , 2001, , 87-123.		3
255	Formation of BaCrO ₄ NanoCrystallites within Thermally Evaporated Sodium Bisâ€2â€Ethylhexylâ€Sulfosuccinate and Stearic Acid Thin Films. Journal of the American Ceramic Society, 2005, 88, 24-27.	3.8	3
256	Free-Standing Nanogold Membranes as Supports for the Growth of Calcium Phosphate Crystals. Biotechnology Progress, 2005, 21, 1759-1767.	2.6	3
257	Room temperature synthesis of porous gold nanostructures by controlled transmetallation reaction via chicken egg shell membrane. Materials Chemistry and Physics, 2017, 202, 22-30.	4.0	3
258	Self-assembled multilayer formation of an aromatic bifunctional molecule via selective ionic interaction. Thin Solid Films, 1997, 307, 280-282.	1.8	2
259	Electrostatically controlled intercalation of Keggin anions into thermally evaporated fatty amine films. Inorganic Chemistry Communication, 2001, 4, 568-570.	3.9	2
260	Quasi-linear Assemblies of Silver Nanoparticles by Highly Localized Anodic Dissolution of Copper in the Hydrosol. Journal of Nanoscience and Nanotechnology, 2002, 2, 147-150.	0.9	2
261	Highly organized assembly of barite crystals grown within thermally evaporated AOT thin films. CrystEngComm, 2003, 5, 400.	2.6	2
262	Fabrication, Characterization, and Enzymatic Activity of Fungal Protease–Nanogold Membrane Bioconjugate. Journal of Nanoscience and Nanotechnology, 2007, 7, 2767-2773.	0.9	2
263	Electrostatic assembly of nanoparticles. Nanostructure Science and Technology, 2004, , 225-250.	0.1	2
264	A Tougaard background deconvolution study of the compositional depth profile in amorphousa‣i1â^'xCx:H alloys. Journal of Applied Physics, 1993, 73, 767-770.	2.5	1
265	Nanoparticle Organization at the Air-Water Interface and in Langmuir-Blodgett Films. , 0, , 369-397.		1
266	A New Method for the Synthesis of Hydrophobic Gold Nanotapes. Journal of Nanoscience and Nanotechnology, 2003, 3, 372-374.	0.9	1
267	Hollow Cold and Platinum Nanoparticles by a Transmetalation Reaction in an Organic Solution ChemInform, 2005, 36, no.	0.0	1
268	Scanning tunneling microscopy/spectroscopy on Au nanoparticles assembled using lauryl amine (LAM) and octadecane thiol (ODT). Applied Surface Science, 2007, 253, 5109-5115.	6.1	1
269	Improved Performance of Preordered Fungal Protease-Stearic Acid Biocomposites: Enhanced Catalytic Activity, Reusability, and Temporal Stability. Biotechnology Progress, 2002, 18, 700-705.	2.6	0
270	Synthesis of Nanolayers of Lead Titanate Ceramics Using Organic Lipid Templates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2006, 36, 137-141.	0.6	0

#	Article	IF	CITATIONS
271	New approach towards imaging λ-DNA using scanning tunneling microscopy/spectroscopy (STM/STS). Bulletin of Materials Science, 2008, 31, 309-312.	1.7	0
272	Porous Anisotropic Metal Nanostructures Through Controlled Transmetallation Across a Dialysis Membrane. Journal of Nanoscience and Nanotechnology, 2009, 9, 6401-6408.	0.9	0
273	Strategies, Challenges, and Advancement in Immobilizing Silver Nanomaterials. Gels Horizons: From Science To Smart Materials, 2021, , 597-643.	0.3	Ο