Hui Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5294998/publications.pdf

Version: 2024-02-01

51	3,641	24	49
papers	citations	h-index	g-index
52	52	52	5171 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Exosomes in cancer: small particle, big player. Journal of Hematology and Oncology, 2015, 8, 83.	17.0	611
2	Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/ \hat{l}^2 -Catenin Pathway. Stem Cells Translational Medicine, 2015, 4, 513-522.	3.3	353
3	Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving \hat{l}^2 -Cell Destruction. ACS Nano, 2018, 12, 7613-7628.	14.6	287
4	CircRNA: a rising star in gastric cancer. Cellular and Molecular Life Sciences, 2020, 77, 1661-1680.	5.4	255
5	Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Molecular Cancer, 2018, 17, 146.	19.2	210
6	MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy, 2018, 20, 291-301.	0.7	191
7	Engineered Extracellular Vesicles for Cancer Therapy. Advanced Materials, 2021, 33, e2005709.	21.0	171
8	EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nature Communications, 2021, 12, 177.	12.8	160
9	Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumor Biology, 2016, 37, 12169-12180.	1.8	144
10	HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of YAP During Cutaneous Regeneration. Stem Cells, 2016, 34, 2485-2500.	3.2	119
11	Exosome-transmitted IncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death and Disease, 2020, 11, 215.	6.3	102
12	Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Science Advances, 2022, 8, eabj8207.	10.3	94
13	3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics, 2017, 7, 1674-1688.	10.0	81
14	Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics. Stem Cells International, 2016, 2016, 1-11.	2.5	80
15	CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis, 2020, 9, 63.	4.9	71
16	Long noncoding RNA DANCR is activated by SALL4 and promotes the proliferation and invasion of gastric cancer cells. Oncotarget, 2018, 9, 1915-1930.	1.8	68
17	PGD2/PTGDR2 Signaling Restricts the Self-Renewal and Tumorigenesis of Gastric Cancer. Stem Cells, 2018, 36, 990-1003.	3.2	64
18	Exosomes derived from hucMSC attenuate renal fibrosis through CK1δſl^2-TRCP-mediated YAP degradation. Cell Death and Disease, 2020, 11, 327.	6.3	60

#	Article	IF	CITATIONS
19	Long non-coding RNA UFC1 promotes gastric cancer progression by regulating miR-498/Lin28b. Journal of Experimental and Clinical Cancer Research, 2018, 37, 134.	8.6	40
20	Resveratrol improves human umbilical cord-derived mesenchymal stem cells repair for cisplatin-induced acute kidney injury. Cell Death and Disease, 2018, 9, 965.	6.3	38
21	Mesenchymal stem cell–derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy, 2019, 21, 497-508.	0.7	38
22	Extracellular Vesicles From Gastric Cancer Cells Induce PD-L1 Expression on Neutrophils to Suppress T-Cell Immunity. Frontiers in Oncology, 2020, 10, 629.	2.8	38
23	Intramedullary versus extramedullary fixation in the management of subtrochanteric femur fractures: a meta-analysis. Clinical Interventions in Aging, 2015, 10, 803.	2.9	30
24	Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/ \hat{l}^2 -catenin pathway. Cell Cycle, 2021, 20, 616-629.	2.6	29
25	Tumor-Educated Neutrophils Activate Mesenchymal Stem Cells to Promote Gastric Cancer Growth and Metastasis. Frontiers in Cell and Developmental Biology, 2020, 8, 788.	3.7	28
26	YAP signaling in gastric cancer-derived mesenchymal stem cells is critical for its promoting role in cancer progression. International Journal of Oncology, 2017, 51, 1055-1066.	3.3	27
27	Anti-cancer drug 3,3′-diindolylmethane activates Wnt4 signaling to enhance gastric cancer cell stemness and tumorigenesis. Oncotarget, 2016, 7, 16311-16324.	1.8	21
28	Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study. EBioMedicine, 2021, 74, 103684.	6.1	21
29	Norepinephrine Inhibits Th17 Cells via Î ² 2-Adrenergic Receptor (Î ² 2-AR) Signaling in a Mouse Model of Rheumatoid Arthritis. Medical Science Monitor, 2018, 24, 1196-1204.	1.1	20
30	Activation of GPR39 with TC-G 1008Âattenuates neuroinflammation via SIRT1/PGC-1α/Nrf2 pathway post-neonatal hypoxic–ischemic injury in rats. Journal of Neuroinflammation, 2021, 18, 226.	7.2	20
31	SALL4 promotes gastric cancer progression via hexokinase II mediated glycolysis. Cancer Cell International, 2020, 20, 188.	4.1	19
32	CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacological Research, 2022, 177, 106133.	7.1	15
33	Steroids as an adjunct for reducing the incidence of proliferative vitreoretinopathy after rhegmatogenous retinal detachment surgery: a systematic review and meta-analysis. Drug Design, Development and Therapy, 2015, 9, 1393.	4.3	13
34	miR-373 suppresses gastric cancer metastasis by downregulating vimentin. Molecular Medicine Reports, 2017, 17, 4027-4034.	2.4	13
35	Identification of a novel YAP-14-3-3ζ negative feedback loop in gastric cancer. Oncotarget, 2017, 8, 71894-71910.	1.8	13
36	3,3′-Diindolylmethane Promotes Gastric Cancer Progression via β-TrCP-Mediated NF-κB Activation in Gastric Cancer-Derived MSCs. Frontiers in Oncology, 2021, 11, 603533.	2.8	12

#	Article	IF	CITATIONS
37	Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Frontiers in Pharmacology, 2021, 12, 702264.	3.5	12
38	Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 736022.	3.7	12
39	Low-Frequency Electroacupuncture Alleviates Chronic Constrictive Injury-Induced Mechanical Allodynia by Inhibiting NR2B Upregulation in Ipsilateral Spinal Dorsal Horn in Rats. Chinese Journal of Integrative Medicine, 2019, 25, 462-467.	1.6	11
40	Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain, Behavior, and Immunity, 2021, 91, 615-626.	4.1	10
41	The association between the rs 11549465 polymorphism in the hif- $1\hat{l}\pm$ gene and cancer risk: a meta-analysis. International Journal of Clinical and Experimental Medicine, 2015, 8, 1561-74.	1.3	10
42	Predicting malignancy in thyroid nodules with benign cytology results: The role of Conventional Ultrasound, Shear Wave Elastography and BRAF V600E. Clinical Hemorheology and Microcirculation, 2022, 81, 33-45.	1.7	8
43	Association of LEPR K109R polymorphisms with cancer risk: a systematic review and pooled analysis. Journal of B U on, 2014, 19, 847-54.	0.4	6
44	A novel method to isolate mesenchymal stem cells from mouse umbilical cord. Molecular Medicine Reports, 2018, 17, 861-869.	2.4	5
45	Should Immediate Postoperative Oral Nutrition Following Esophagectomy Be Generalized Immediately?. Annals of Thoracic Surgery, 2017, 104, 1756.	1.3	2
46	Sweet Versus Ivor-Lewis: Is It Time To Draw a Conclusion?. Annals of Surgery, 2018, 268, e34-e35.	4.2	2
47	Single Bounded Parallel-Batch Machine Scheduling with an Unavailability Constraint and Job Delivery. Lecture Notes in Computer Science, 2020, , 525-536.	1.3	2
48	Successful removal of a giant pulmonary hamartoma coexisting with an anomalous common pulmonary venous trunk. Journal of Thoracic Disease, 2015, 7, E23-7.	1.4	2
49	Platelet-rich plasma promotes MSCs exosomes paracrine to repair acute kidney injury via AKT/Rab27 pathway. American Journal of Translational Research (discontinued), 2021, 13, 1445-1457.	0.0	2
50	Non-resumable scheduling on a single bounded parallel-batch machine with periodic maintenance. Journal of Combinatorial Optimization, 0, , 1.	1.3	1
51	A three-stage supply chain scheduling problem based on the nursing assistants' daily work in a hospital. Journal of Combinatorial Optimization, 2021, 42, 896-908.	1.3	0