Vera Schulte-Pelkum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5294903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Crystals to Crustalâ€Scale Seismic Anisotropy: Bridging the Gap Between Rocks and Seismic Studies With Digital Geologic Map Data in Colorado. Tectonics, 2022, 41, .	2.8	5
2	Tectonic Fabric in the Banda Arcâ€Australian Continent Collisional Zone Imaged by Teleseismic Receiver Functions. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	5
3	Shallow Crustal Shear Velocity and Vp/Vs Across Southern California: Joint Inversion of Shortâ€Period Rayleigh Wave Ellipticity, Phase Velocity, and Teleseismic Receiver Functions. Geophysical Research Letters, 2021, 48, e2021GL092626.	4.0	7
4	The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics, 2021, 814, 228954.	2.2	14
5	Tectonic Inheritance During Plate Boundary Evolution in Southern California Constrained From Seismic Anisotropy. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010099.	2.5	3
6	Imaging the Tectonic Grain of the Northern Cordillera Orogen Using Transportable Array Receiver Functions. Seismological Research Letters, 2020, 91, 3086-3105.	1.9	12
7	Crustal Deformation in Southern California Constrained by Radial Anisotropy From Ambient Noise Adjoint Tomography. Geophysical Research Letters, 2020, 47, e2020GL088580.	4.0	24
8	Tectonic Inheritance With Dipping Faults and Deformation Fabric in the Brittle and Ductile Southern California Crust. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019525.	3.4	17
9	Shear Velocity Model of Alaska Via Joint Inversion of Rayleigh Wave Ellipticity, Phase Velocities, and Receiver Functions Across the Alaska Transportable Array. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018582.	3.4	41
10	Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mioâ€Pliocene Volcanism Constraints. Journal of Geophysical Research: Solid Earth, 2019, 124, 9833-9851.	3.4	10
11	Mantle earthquakes in the Himalayan collision zone. Geology, 2019, 47, 815-819.	4.4	20
12	Matched Field Processing of Threeâ€Component Seismic Array Data Applied to Rayleigh and Love Microseisms. Journal of Geophysical Research: Solid Earth, 2018, 123, 6871-6889.	3.4	22
13	Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves. Tectonophysics, 2017, 721, 56-69.	2.2	40
14	Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 2017, 36, 1835-1857.	2.8	49
15	The distribution and composition of highâ€velocity lower crust across the continental U.S.: Comparison of seismic and xenolith data and implications for lithospheric dynamics and history. Tectonics, 2017, 36, 1455-1496.	2.8	25
16	Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards. Tectonophysics, 2017, 714-715, 21-30.	2.2	32
17	A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray. Earth and Planetary Science Letters, 2014, 402, 221-233.	4.4	113
18	Imaging Faults and Shear Zones Using Receiver Functions. Pure and Applied Geophysics, 2014, 171, 2967-2991.	1.9	33

Vera Schulte-Pelkum

#	Article	IF	CITATIONS
19	Origins of topography in the western U.S.: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. Journal of Geophysical Research: Solid Earth, 2014, 119, 2375-2396.	3.4	38
20	A 3â€Ð model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth, 2013, 118, 262-276.	3.4	189
21	Sequential H-Â Stacking to Obtain Accurate Crustal Thicknesses beneath Sedimentary Basins. Bulletin of the Seismological Society of America, 2013, 103, 2142-2150.	2.3	83
22	Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophysical Journal International, 2013, 192, 807-836.	2.4	202
23	Crustal and uppermost mantle structure in the central U.S. encompassing the Midcontinent Rift. Journal of Geophysical Research: Solid Earth, 2013, 118, 4325-4344.	3.4	44
24	Apparent Vertical Moho Offsets under Continental Strike-Slip Faults from Lithology Contrasts in the Seismogenic Crust. Bulletin of the Seismological Society of America, 2012, 102, 2757-2763.	2.3	17
25	Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	16
26	Roles of quartz and mica in seismic anisotropy of mylonites. Geophysical Journal International, 2012, 190, 1123-1134.	2.4	44
27	Differential motion between upper crust and lithospheric mantle in the central Basin and Range. Nature Geoscience, 2011, 4, 619-623.	12.9	19
28	Estimating the Rayleigh-wave impulse response between seismic stations with the cross terms of the Green tensor. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
29	Draining Nevada. Nature Geoscience, 2009, 2, 381-382.	12.9	0
30	Seismicity and one-dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle. Journal of Geophysical Research, 2006, 111, .	3.3	182
31	Mantle flow under the western United States from shear wave splitting. Earth and Planetary Science Letters, 2006, 247, 235-251.	4.4	79
32	Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. Journal of Geophysical Research, 2006, 111, .	3.3	135
33	Imaging the Indian subcontinent beneath the Himalaya. Nature, 2005, 435, 1222-1225.	27.8	419
34	Passive source seismology of the Rocky Mountain region. Geophysical Monograph Series, 2005, , 309-315.	0.1	1
35	Strong directivity of ocean-generated seismic noise. Geochemistry, Geophysics, Geosystems, 2004, 5, .	2.5	88
36	A synthesis of seismicPandSanisotropy. Geophysical Journal International, 2003, 154, 166-178.	2.4	51

#	Article	IF	CITATIONS
37	Large Teleseismic P Wavefront Deflections Observed with Broadband Arrays. Bulletin of the Seismological Society of America, 2003, 93, 747-756.	2.3	7
38	Upper mantle anisotropy from long-periodPpolarization. Journal of Geophysical Research, 2001, 106, 21917-21934.	3.3	72