Camilla Scheele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5294157/publications.pdf

Version: 2024-02-01

75 6,528 papers citations

39 77
h-index g-index

85 85 all docs citations

85 times ranked 11064 citing authors

#	Article	IF	CITATIONS
1	Isolation and Characterization of Human Brown Adipocytes. Methods in Molecular Biology, 2022, 2448, 217-234.	0.9	O
2	Can we target obesity using a single-cell atlas of adipose tissue?. Med, 2022, 3, 276-278.	4.4	4
3	Brown Adipose Tissue: A Metabolic Regulator in a Hypothalamic Cross Talk?. Annual Review of Physiology, 2021, 83, 279-301.	13.1	16
4	Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Reports, 2021, 34, 108624.	6.4	33
5	VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nature Communications, 2021, 12, 2431.	12.8	20
6	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	28.9	68
7	Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Molecular Metabolism, 2021, 51, 101237.	6.5	27
8	Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nature Communications, 2021, 12, 304.	12.8	79
9	Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men. Cell Reports Medicine, 2021, 2, 100408.	6.5	17
10	Perspectives on the role of brown adipose tissue in human body temperature and metabolism. Cell Reports Medicine, 2021, 2, 100427.	6.5	1
11	Functional diversity of human adipose tissue revealed by spatial mapping. Nature Reviews Endocrinology, 2021, 17, 713-714.	9.6	3
12	OUP accepted manuscript. Biology Methods and Protocols, 2021, 6, bpab021.	2.2	5
13	Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men. Endocrine Research, 2020, 45, 58-71.	1.2	7
14	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	20.1	109
15	Human Brown Adipocyte Thermogenesis Is Driven by \hat{l}^2 2-AR Stimulation. Cell Metabolism, 2020, 32, 287-300.e7.	16.2	185
16	Calsyntenin $3\hat{l}^2$ Is Dynamically Regulated by Temperature in Murine Brown Adipose and Marks Human Multilocular Fat. Frontiers in Endocrinology, 2020, 11, 579785.	3.5	7
17	Exercise and browning of white adipose tissue – a translational perspective. Current Opinion in Pharmacology, 2020, 52, 18-24.	3.5	27
18	Human thermogenic adipocyte regulation by the long noncoding RNA LINCO0473. Nature Metabolism, 2020, 2, 397-412.	11.9	65

#	Article	IF	CITATIONS
19	Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metabolism, 2020, 32, 56-70.e7.	16.2	77
20	Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nature Metabolism, 2019, 1, 830-843.	11.9	103
21	An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Scientific Reports, 2019, 9, 12069.	3.3	30
22	Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metabolism, 2019, 30, 963-975.e7.	16.2	109
23	Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17970-17979.	7.1	106
24	Dysregulated autophagy in muscle precursor cells from humans with type 2 diabetes. Scientific Reports, 2019, 9, 8169.	3.3	16
25	Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Molecular Metabolism, 2019, 24, 30-43.	6.5	85
26	Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nature Genetics, 2019, 51, 716-727.	21.4	156
27	Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Research and Therapy, 2019, 10, 26.	5.5	52
28	Angiogenic and inflammatory biomarkers for screening and follow-up in patients with pulmonary arterial hypertension. Scandinavian Journal of Rheumatology, 2018, 47, 319-324.	1.1	30
29	Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metabolism, 2018, 27, 195-209.e6.	16.2	151
30	Gamma-Aminobutyric Acid Signaling in Brown Adipose Tissue Promotes Systemic Metabolic Derangement in Obesity. Cell Reports, 2018, 24, 2827-2837.e5.	6.4	40
31	Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis. Cell Metabolism, 2018, 28, 159-174.e11.	16.2	114
32	Single Cell Analysis Identifies the miRNA Expression Profile of a Subpopulation of Muscle Precursor Cells Unique to Humans With Type 2 Diabetes. Frontiers in Physiology, 2018, 9, 883.	2.8	5
33	Adipogenesis in Primary Cell Culture. Handbook of Experimental Pharmacology, 2018, 251, 73-84.	1.8	8
34	Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Medicine, 2017, 15, 39.	5.5	51
35	Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biology, 2017, 12, 770-775.	9.0	62
36	Dysregulation of a novel miR-23b/27b-p53 axis impairs muscle stem cell differentiation of humans with type 2 diabetes. Molecular Metabolism, 2017, 6, 770-779.	6.5	27

#	Article	IF	CITATIONS
37	FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Cell Metabolism, 2017, 25, 1045-1053.e6.	16.2	169
38	Fetal Hyperglycemia Changes Human Preadipocyte Function in Adult Life. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1141-1150.	3.6	20
39	Alterations in Vascular Endothelial Growth Factors After Heart Transplantation. Journal of Heart and Lung Transplantation, 2017, 36, S395-S396.	0.6	0
40	NFIA co-localizes with PPAR \hat{I}^3 and transcriptionally controls the brown fat gene program. Nature Cell Biology, 2017, 19, 1081-1092.	10.3	73
41	Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes. Genome Medicine, 2017, 9, 47.	8.2	37
42	Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metabolism, 2016, 24, 118-129.	16.2	259
43	Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia, 2016, 59, 2664-2673.	6.3	36
44	Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes. Cell Reports, 2015, 11, 921-933.	6.4	112
45	Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes. Diabetologia, 2015, 58, 363-373.	6.3	53
46	The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training. PLoS ONE, 2014, 9, e87308.	2.5	247
47	In Vitro Palmitate Treatment of Myotubes from Postmenopausal Women Leads to Ceramide Accumulation, Inflammation and Affected Insulin Signaling. PLoS ONE, 2014, 9, e101555.	2.5	13
48	Novel nuances of human brown fat. Adipocyte, 2014, 3, 54-57.	2.8	33
49	Muscle specific miRNAs are induced by testosterone and independently upregulated by age. Frontiers in Physiology, 2014, 4, 394.	2.8	30
50	Impaired Leptin Gene Expression and Release in Cultured Preadipocytes Isolated From Individuals Born With Low Birth Weight. Diabetes, 2014, 63, 111-121.	0.6	43
51	Adipose adaptation to exercise training –increased metabolic rate but no signs of browning. Acta Physiologica, 2014, 211, 11-12.	3.8	4
52	Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature, 2014, 516, 395-399.	27.8	316
53	Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes. Diabetes, 2014, 63, 2962-2976.	0.6	326
54	Interleukinâ€6 myokine signaling in skeletal muscle: a doubleâ€edged sword?. FEBS Journal, 2013, 280, 4131-4148.	4.7	550

#	Article	IF	CITATIONS
55	A Classical Brown Adipose Tissue mRNA Signature Partly Overlaps with Brite in the Supraclavicular Region of Adult Humans. Cell Metabolism, 2013, 17, 798-805.	16.2	474
56	Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate. Journal of Physiology, 2013, 591, 4621-4635.	2.9	17
57	Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression. PLoS ONE, 2013, 8, e66628.	2.5	29
58	Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E283-E292.	3.5	31
59	Satellite Cells Derived from Obese Humans with Type 2 Diabetes and Differentiated into Myocytes In Vitro Exhibit Abnormal Response to IL-6. PLoS ONE, 2012, 7, e39657.	2.5	55
60	Elevated NF-κB Activation Is Conserved in Human Myocytes Cultured From Obese Type 2 Diabetic Patients and Attenuated by AMP-Activated Protein Kinase. Diabetes, 2011, 60, 2810-2819.	0.6	95
61	LIF is a contraction-induced myokine stimulating human myocyte proliferation. Journal of Applied Physiology, 2011, 111, 251-259.	2.5	112
62	Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. Journal of Physiology, 2010, 588, 4029-4037.	2.9	273
63	Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of Applied Physiology, 2010, 108, 1487-1496.	2.5	296
64	Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Medicine, 2010, 2, 9.	8.2	225
65	Chapter 12 Using Functional Genomics to Study PINK1 and Metabolic Physiology. Methods in Enzymology, 2009, 457, 211-229.	1.0	3
66	ROS and myokines promote muscle adaptation to exercise. Trends in Endocrinology and Metabolism, 2009, 20, 95-99.	7.1	132
67	Genomic variants at the PINK1 locus are associated with transcript abundance and plasma nonesterified fatty acid concentrations in European whites. FASEB Journal, 2008, 22, 3135-3145.	0.5	13
68	Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure. PLoS ONE, 2008, 3, e3686.	2.5	137
69	Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration?. FASEB Journal, 2007, 21, 3653-3665.	0.5	83
70	Do mitochondria provide a common link between diabetes and Parkinson's disease?. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2007, 24, 337-339.	0.2	0
71	The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics, 2007, 8, 74.	2.8	125
72	Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics, 2006, 87, 165-172.	2.9	64

#	Article	IF	CITATIONS
73	Kinetics of Senescence-associated Changes of Gene Expression in an Epithelial, Temperature-sensitive SV40 Large T Antigen Model. Cancer Research, 2004, 64, 482-489.	0.9	24
74	Characterization of RNA interference in rat PC12 cells: requirement of GERp95. Biochemical and Biophysical Research Communications, 2004, 318, 927-934.	2.1	10
75	Activity-induced and developmental downregulation of the Nogo receptor. Cell and Tissue Research, 2003, 311, 333-342.	2.9	71