Xiaohu Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5293273/publications.pdf

Version: 2024-02-01

53660 38300 19,220 105 45 95 citations h-index g-index papers 108 108 108 21086 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnetoâ€Endosomalytic Therapy for Cancer. Advanced Healthcare Materials, 2022, 11, e2101010.	3.9	6
2	Partial Magneto-Endosomalysis for Cytosolic Delivery of Antibodies. Bioconjugate Chemistry, 2022, 33, 363-368.	1.8	3
3	Combining Qdot Nanotechnology and DNA Nanotechnology for Sensitive Singleâ€Cell Imaging. Advanced Materials, 2020, 32, e1908410.	11.1	24
4	Cytosolic delivery of proteins by cholesterol tagging. Science Advances, 2020, 6, eabb0310.	4.7	37
5	Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicology and Applied Pharmacology, 2019, 368, 55-62.	1.3	13
6	Ribonucleoprotein: A Biomimetic Platform for Targeted siRNA Delivery. Advanced Functional Materials, 2019, 29, 1902221.	7.8	7
7	Triplex DNA Nanoswitch for pH-Sensitive Release of Multiple Cancer Drugs. ACS Nano, 2019, 13, 7333-7344.	7. 3	89
8	Membraneâ€Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angewandte Chemie, 2019, 131, 7161-7165.	1.6	19
9	Membraneâ€Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angewandte Chemie - International Edition, 2019, 58, 7087-7091.	7.2	131
10	Molecular Engineering: From Molecules to Medicine. Advanced Healthcare Materials, 2019, 8, 1900225.	3.9	0
11	Scalable Production of Therapeutic Protein Nanoparticles Using Flash Nanoprecipitation. Advanced Healthcare Materials, 2019, 8, e1801010.	3.9	27
12	Noncovalent tagging of siRNA with steroids for transmembrane delivery. Biomaterials, 2018, 178, 720-727.	5.7	26
13	Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nature Medicine, 2018, 24, 368-374.	15.2	117
14	Synthesis of hybrid magneto-plasmonic nanoparticles with potential use in photoacoustic detection of circulating tumor cells. Mikrochimica Acta, 2018, 185, 130.	2.5	19
15	A ribonucleoprotein octamer for targeted siRNA delivery. Nature Biomedical Engineering, 2018, 2, 326-337.	11.6	63
16	A universal strategy for the one-pot synthesis of SERS tags. Nanoscale, 2018, 10, 8292-8297.	2.8	30
17	Cross-Platform Cancer Cell Identification Using Telomerase-Specific Spherical Nucleic Acids. ACS Nano, 2018, 12, 3629-3637.	7. 3	66
18	Quantum dot induced acute changes in lung mechanics are mouse strain dependent. Inhalation Toxicology, 2018, 30, 397-403.	0.8	12

#	Article	lF	CITATIONS
19	Synthetic Polymer Tag for Intracellular Delivery of siRNA. Advanced Biology, 2018, 2, 1800075.	3.0	5
20	Lipid Stabilized Solid Drug Nanoparticles for Targeted Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24969-24974.	4.0	16
21	Immuno-Nanoparticles for Multiplex Protein Imaging in Cells and Tissues. Biochip Journal, 2018, 12, 83-92.	2.5	11
22	Eliminating Diffusion Limitations at the Solid–Liquid Interface for Rapid Polymer Deposition. ACS Biomaterials Science and Engineering, 2017, 3, 782-786.	2.6	5
23	Eliminating the Animal Species Constraints in Antibody Selection for Multicolor Immunoassays. Bioconjugate Chemistry, 2017, 28, 1499-1504.	1.8	0
24	Engineering Single Nanopores on Gold Nanoplates by Tuning Crystal Screw Dislocation. Advanced Materials, 2017, 29, 1703102.	11.1	17
25	Gradient Coating of Polydopamine via CDR. Langmuir, 2017, 33, 6727-6731.	1.6	13
26	Functional peptides for siRNA delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 157-168.	6.6	138
27	Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nature Biomedical Engineering, 2017, 1 , .	11.6	93
28	Eliminating Size-Associated Diffusion Constraints for Rapid On-Surface Bioassays with Nanoparticle Probes. Small, 2016, 12, 1035-1043.	5.2	21
29	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie, 2016, 128, 9121-9124.	1.6	0
30	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie - International Edition, 2016, 55, 8975-8978.	7.2	10
31	Bioassays: Eliminating Size-Associated Diffusion Constraints for Rapid On-Surface Bioassays with Nanoparticle Probes (Small 8/2016). Small, 2016, 12, 1034-1034.	5.2	2
32	Functional Photoacoustic Imaging of Gastric Acid Secretion Using pHâ€Responsive Polyaniline Nanoprobes. Small, 2016, 12, 4690-4696.	5.2	32
33	Direct characterization of polymer encapsulated CdSe/CdS/ZnS quantum dots. Surface Science, 2016, 648, 339-344.	0.8	23
34	Multiplexed In-cell Immunoassay for Same-sample Protein Expression Profiling. Scientific Reports, 2015, 5, 13651.	1.6	3
35	Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicology and Applied Pharmacology, 2015, 289, 240-250.	1.3	33
36	Magneto-Optical Nanoparticles for Cyclic Magnetomotive Photoacoustic Imaging. ACS Nano, 2015, 9, 1964-1976.	7.3	50

#	Article	IF	Citations
37	Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages. Nanotoxicology, 2015, 9, 336-343.	1.6	31
38	Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages. Nanoscale, 2015, 7, 10085-10093.	2.8	37
39	Leveraging nanotechnology for enrichment of circulating tumor cells in vivo. Nanomedicine, 2015, 10, 2477-2480.	1.7	O
40	Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization. Nano Letters, 2015, 15, 8217-8222.	4.5	24
41	Particles for Healthcare Applications. Particle and Particle Systems Characterization, 2014, 31, 1202-1203.	1.2	0
42	Addressing Key Technical Aspects of Quantum Dot Probe Preparation for Bioassays. Particle and Particle Systems Characterization, 2014, 31, 1291-1299.	1.2	2
43	Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polymer Chemistry, 2014, 5, 2854-2862.	1.9	93
44	Nanoparticle counting: towards accurate determination of the molar concentration. Chemical Society Reviews, 2014, 43, 7267-7278.	18.7	189
45	A living light bulb, ultrasensitive biodetection made easy. Cell and Bioscience, 2014, 4, 34.	2.1	1
46	An Aggregationâ€Inducedâ€Emission Platform for Direct Visualization of Interfacial Dynamic Selfâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 13518-13522.	7.2	77
47	Triblock Copolymer-Encapsulated Nanoparticles with Outstanding Colloidal Stability for siRNA Delivery. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2845-2852.	4.0	22
48	Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nature Protocols, 2013, 8, 1852-1869.	5.5	60
49	Can Molecular Imaging Enable Personalized Diagnostics? An Example Using Magnetomotive Photoacoustic Imaging. Annals of Biomedical Engineering, 2013, 41, 2237-2247.	1.3	7
50	Emerging applications of conjugated polymers in molecular imaging. Physical Chemistry Chemical Physics, 2013, 15, 17006.	1.3	34
51	Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 2013, 65, 703-718.	6.6	375
52	Quantum dot imaging platform for single-cell molecular profiling. Nature Communications, 2013, 4, 1619.	5.8	217
53	Molecular Imaging with Multifunctional Nanoparticles. Clinical Chemistry, 2013, 59, 1532-1533.	1.5	1
54	Magnetomotive photoacoustic imaging: <i>in vitro</i> studies of magnetic trapping with simultaneous photoacoustic detection of rare circulating tumor cells. Journal of Biophotonics, 2013, 6, 513-522.	1.1	21

#	Article	IF	CITATIONS
55	Trapping and Photoacoustic Detection of CTCs at the Single Cell per Milliliter Level with Magnetoâ€Optical Coupled Nanoparticles. Small, 2013, 9, 2046-2052.	5.2	47
56	Nanoparticles: Trapping and Photoacoustic Detection of CTCs at the Single Cell per Milliliter Level with Magneto-Optical Coupled Nanoparticles (Small 12/2013). Small, 2013, 9, 2045-2045.	5 . 2	2
57	A Universal Protein Tag for Delivery of SiRNA-Aptamer Chimeras. Scientific Reports, 2013, 3, 3129.	1.6	45
58	Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology, 2013, 7, 181-191.	1.6	20
59	The Glutathione Synthesis Gene Gclm Modulates Amphiphilic Polymer-Coated CdSe/ZnS Quantum Dot–Induced Lung Inflammation in Mice. PLoS ONE, 2013, 8, e64165.	1.1	29
60	Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents. Journal of Biomedical Optics, 2012, 17, 1.	1.4	11
61	<i>In Vitro</i> Toxicity Assessment of Amphiphillic Polymer-Coated CdSe/ZnS Quantum Dots in Two Human Liver Cell Models. ACS Nano, 2012, 6, 9475-9484.	7.3	58
62	Magnetic trapping and photoacoustic detection of rare circulating tumor cells., 2012,,.		0
63	Multifunctional Nanocapsules for Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds and On-Demand Release. ACS Nano, 2012, 6, 2558-2565.	7.3	137
64	Multilayer coating of gold nanorods for combined stability and biocompatibility. Physical Chemistry Chemical Physics, 2011, 13, 10028.	1.3	73
65	Engineering Monovalent Quantum Dotâ^'Antibody Bioconjugates with a Hybrid Gel System. Bioconjugate Chemistry, 2011, 22, 510-517.	1.8	36
66	Method for Determining the Elemental Composition and Distribution in Semiconductor Coreâ ⁻ Shell Quantum Dots. Analytical Chemistry, 2011, 83, 866-873.	3.2	41
67	Rapid Multitarget Immunomagnetic Separation through Programmable DNA Linker Displacement. Journal of the American Chemical Society, 2011, 133, 17126-17129.	6.6	34
68	siRNA-Aptamer Chimeras on Nanoparticles: Preserving Targeting Functionality for Effective Gene Silencing. ACS Nano, 2011, 5, 8131-8139.	7.3	94
69	Trapping and dynamic manipulation of magnetic contrast agent targeted cancer cells in photoacoustic imaging: Phantom study. , 2011 , , .		1
70	Stable Encapsulation of Quantum Dot Barcodes with Silica Shells. Advanced Functional Materials, 2010, 20, 3721-3726.	7.8	35
71	Multifunctional nanoparticles as coupled contrast agents. Nature Communications, 2010, $1,41$.	5.8	456
72	Contrast-enhanced photoacoustic imaging. , 2010, , .		3

#	Article	IF	CITATIONS
73	Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010, 39, 4326.	18.7	866
74	Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy. Journal of the American Chemical Society, 2010, 132, 7234-7237.	6.6	266
75	Silicaâ^Polymer Dual Layer-Encapsulated Quantum Dots with Remarkable Stability. ACS Nano, 2010, 4, 6080-6086.	7.3	147
76	Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging. Small, 2009, 5, 235-243.	5.2	315
77	QD barcodes for biosensing and detection. , 2009, 2009, 6372-3.		0
78	Traceable siRNA delivery with quantum dots., 2009, 2009, 4093-4.		0
79	Encapsulation of Single Quantum Dots with Mesoporous Silica. Annals of Biomedical Engineering, 2009, 37, 1960-1966.	1.3	75
80	Plasmonic fluorescent quantum dots. Nature Nanotechnology, 2009, 4, 571-576.	15.6	383
81	Multifunctional quantum dots for personalized medicine. Nano Today, 2009, 4, 414-428.	6.2	113
82	Spectrally Tunable Leakage-Free Gold Nanocontainers. Journal of the American Chemical Society, 2009, 131, 17774-17776.	6.6	120
83	Receptor-Targeted Nanoparticles for <i>In vivo</i> Imaging of Breast Cancer. Clinical Cancer Research, 2009, 15, 4722-4732.	3.2	210
84	Quantum Dotâ^'Amphipol Nanocomplex for Intracellular Delivery and Real-Time Imaging of siRNA. ACS Nano, 2008, 2, 1403-1410.	7.3	206
85	Ultrasensitive detection and molecular imaging with magnetic nanoparticles. Analyst, The, 2008, 133, 154-160.	1.7	43
86	Quantum Dot Nanobarcodes: Epitaxial Assembly of Nanoparticleâ^'Polymer Complexes in Homogeneous Solution. Journal of the American Chemical Society, 2008, 130, 5286-5292.	6.6	112
87	Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. Journal of the American Chemical Society, 2008, 130, 9006-9012.	6.6	387
88	Emerging application of quantum dots for drug delivery and therapy. Expert Opinion on Drug Delivery, 2008, 5, 263-267.	2.4	163
89	Quantum Dots for In Vivo Molecular and Cellular Imaging. , 2007, 374, 135-146.		60
90	Multifunctional quantum dots for cellular and molecular imaging. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 524-5.	0.5	4

#	Article	IF	Citations
91	Quantum Dots for Molecular Pathology. Journal of Molecular Diagnostics, 2007, 9, 7-11.	1.2	73
92	Quantum Dots for Cancer Molecular Imaging. Advances in Experimental Medicine and Biology, 2007, 620, 57-73.	0.8	36
93	Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncology, The, 2006, 7, 657-667.	5.1	505
94	Multicolor quantum dots for molecular diagnostics of cancer. Expert Review of Molecular Diagnostics, 2006, 6, 231-244.	1.5	322
95	In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 2005, 16, 63-72.	3.3	1,131
96	In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22, 969-976.	9.4	4,460
97	Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity:Â Rapid Readout Using Flow Cytometry. Analytical Chemistry, 2004, 76, 2406-2410.	3.2	271
98	Quantum Dot Nanocrystals for <i>In Vivo</i> Molecular and Cellular Imaging [¶] . Photochemistry and Photobiology, 2004, 80, 377-385.	1.3	9
99	Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶. Photochemistry and Photobiology, 2004, 80, 377.	1.3	128
100	Molecular profiling of single cells and tissue specimens with quantum dots. Trends in Biotechnology, 2003, 21, 371-373.	4.9	216
101	Doping Mesoporous Materials with Multicolor Quantum Dots. Journal of Physical Chemistry B, 2003, 107, 11575-11578.	1.2	175
102	Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. Journal of Biomedical Optics, 2002, 7, 532.	1.4	412
103	Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 2002, 13, 40-46.	3.3	1,975
104	Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology, 2001, 19, 631-635.	9.4	2,536
105	Semiconductor Quantum Dots as Multicolor and Ultrasensitive Biological Labels. , 0, , 494-506.		0