Eldon E Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5292371/publications.pdf

Version: 2024-02-01

71102 56724 7,381 91 41 83 citations h-index g-index papers 93 93 93 6544 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408, 86-89.	27.8	2,167
2	The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss. Genome Biology, 2007, 8, R59.	9.6	322
3	Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends in Genetics, 2005, 21, 633-639.	6.7	315
4	Whole Transcriptome Analysis of the Coral <i>Acropora millepora</i> Reveals Complex Responses to CO ₂ â€driven Acidification during the Initiation of Calcification. Molecular Ecology, 2012, 21, 2440-2454.	3.9	289
5	Changing role of even-skipped during the evolution of insect pattern formation. Nature, 1992, 357, 339-342.	27.8	266
6	Molecular evolution of integrins: Genes encoding integrin subunits from a coral and a sponge. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9182-9187.	7.1	163
7	Muscle development in the grasshopper embryo. Developmental Biology, 1985, 111, 383-398.	2.0	143
8	Muscle pioneers: large mesodermal cells that erect a scaffold for developing muscles and motoneurones in grasshopper embryos. Nature, 1983, 301, 66-69.	27.8	135
9	Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8106-8111.	7.1	126
10	Microarray analysis identifies candidate genes for key roles in coral development. BMC Genomics, 2008, 9, 540.	2.8	119
11	Cnidarians and ancestral genetic complexity in the animal kingdom. Trends in Genetics, 2005, 21, 536-539.	6.7	116
12	A simple plan â€" cnidarians and the origins of developmental mechanisms. Nature Reviews Genetics, 2004, 5, 567-577.	16.3	108
13	Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): Implications for the evolution of the Pax gene family. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4475-4480.	7.1	102
14	Rapid acclimation of juvenile corals to CO ₂ â€mediated acidification by upregulation of heat shock protein and Bclâ€2 genes. Molecular Ecology, 2015, 24, 438-452.	3.9	101
15	Muscle development in the grasshopper embryo. Developmental Biology, 1985, 111, 417-424.	2.0	93
16	A Royal Jelly Protein Is Expressed in a Subset of Kenyon Cells in the Mushroom Bodies of the Honey Bee Brain. Die Naturwissenschaften, 1998, 85, 343-346.	1.6	93
17	The transcriptomic response of the coral <i>Acropora digitifera</i> to a competent <i>Symbiodinium</i> strain: the symbiosome as an arrested early phagosome. Molecular Ecology, 2016, 25, 3127-3141.	3.9	88
18	Patterns of Gene Expression in a Scleractinian Coral Undergoing Natural Bleaching. Marine Biotechnology, 2010, 12, 594-604.	2.4	87

#	Article	IF	CITATIONS
19	Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (walker). Cell and Tissue Research, 1974, 147, 293-312.	2.9	79
20	The biology of coral metamorphosis: Molecular responses of larvae to inducers of settlement and metamorphosis. Developmental Biology, 2011, 353, 411-419.	2.0	76
21	Grasshopper <i>hunchback</i> expression reveals conserved and novel aspects of axis formation and segmentation. Development (Cambridge), 2001, 128, 3459-3472.	2.5	73
22	Gene structure and larval expression of cnox-2Am from the coral Acropora millepora. Development Genes and Evolution, 2001, 211, 10-19.	0.9	66
23	A DM domain protein from a coral, <i>Acropora millepora</i> , homologous to proteins important for sex determination. Evolution & Development, 2003, 5, 251-258.	2.0	65
24	The Whole-Genome Sequence of the Coral Acropora millepora. Genome Biology and Evolution, 2019, 11, 1374-1379.	2.5	64
25	The sequence of Locusta RXR, homologous to Drosophila Ultraspiracle, and its evolutionary implications. Development Genes and Evolution, 1999, 209, 564-571.	0.9	63
26	Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a †radiate†animal, the anthozoan cnidarian Acropora millepora. Developmental Biology, 2006, 298, 632-643.	2.0	62
27	Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evolutionary Biology, 2009, 9, 178.	3.2	58
28	Patterns of embryonic neurogenesis in a primitive wingless insect, the silverfish, Ctenolepisma longicaudata: comparison with those seen in flying insects. Development Genes and Evolution, 1998, 208, 357-368.	0.9	57
29	Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene, 2000, 242, 399-405.	2.2	57
30	Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biology, 2018, 19, 175.	8.8	57
31	Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behavior and habitat. Tissue and Cell, 1977, 9, 521-536.	2.2	56
32	Deciphering the nature of the coral– <i>Chromera</i> association. ISME Journal, 2018, 12, 776-790.	9.8	56
33	Developing grasshopper neurons show variable levels of guanylyl cyclase activity on arrival at their targets., 1998, 394, 1-13.		54
34	Coral development: from classical embryology to molecular control. International Journal of Developmental Biology, 2002, 46, 671-8.	0.6	54
35	Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (walker). Cell and Tissue Research, 1974, 147, 313-324.	2.9	53
36	Transcriptomic differences between day and night in <i>Acropora millepora</i> provide new insights into metabolite exchange and lightâ€enhanced calcification in corals. Molecular Ecology, 2015, 24, 4489-4504.	3.9	51

#	Article	IF	Citations
37	New tricks with old genes: the genetic bases of novel cnidarian traits. Trends in Genetics, 2010, 26, 154-158.	6.7	50
38	The Evolution of Nuclear Receptors: Evidence from the Coral Acropora. Molecular Phylogenetics and Evolution, 2001, 21, 93-102.	2.7	49
39	Ligand specificity and developmental expression of RXR and ecdysone receptor in the migratory locust. Journal of Insect Physiology, 2003, 49, 1135-1144.	2.0	48
40	Differential Gene Expression at Coral Settlement and Metamorphosis - A Subtractive Hybridization Study. PLoS ONE, 2011, 6, e26411.	2.5	47
41	Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics, 2016, 17, 62.	2.8	45
42	Functional development of the auditory system of the cricket, Teleogryllus commodus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1978, 127, 131-138.	1.6	44
43	Structure of the auditory system of the weta Hemideina crassidens (Blanchard, 1851) (Orthoptera,) Tj ETQq1	1 0.784314 2.9	rgBT /Overlo
44	Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa. BMC Evolutionary Biology, 2008, 8, 311.	3.2	44
45	The acute transcriptional response of the coral Acropora millepora to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants. BMC Genomics, 2013, 14, 400.	2.8	44
46	The flightless I protein localizes to actinâ€based structures during embryonic development. Immunology and Cell Biology, 2000, 78, 423-429.	2.3	41
47	Genomic and microarray approaches to coral reef conservation biology. Coral Reefs, 2007, 26, 475-486.	2.2	41
48	The coral Acropora: What it can contribute to our knowledge of metazoan evolution and the evolution of developmental processes. BioEssays, 2000, 22, 291-296.	2.5	39
49	snail expression during embryonic development of the coral Acropora : blurring the diploblast/triploblast divide?. Development Genes and Evolution, 2004, 214, 257-260.	0.9	39
50	Initiation and modulation of flight by a single giant interneuron in the cercal system of the locust. Die Naturwissenschaften, 1986, 73, 272-274.	1.6	38
51	Animal Evolution: The Enigmatic Phylum Placozoa Revisited. Current Biology, 2005, 15, R26-R28.	3.9	36
52	Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evolutionary Biology, 2008, 8, 136.	3.2	36
53	Muscle development in the grasshopper embryo. Developmental Biology, 1985, 111, 399-416.	2.0	35
54	Pax-6 origins - implications from the structure of two coral Pax genes. Development Genes and Evolution, 1998, 208, 352-356.	0.9	35

#	Article	IF	Citations
55	Position-specific expression of the annulin protein during grasshopper embryogenesis. Developmental Biology, 1992, 154, 129-142.	2.0	34
56	Comparative Embryology of Eleven Species of Stony Corals (Scleractinia). PLoS ONE, 2013, 8, e84115.	2.5	34
57	Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends in Genetics, 2008, 24, 1-4.	6.7	32
58	A "Neural" Enzyme in Nonbilaterian Animals and Algae: Preneural Origins for Peptidylglycine Â-Amidating Monooxygenase. Molecular Biology and Evolution, 2012, 29, 3095-3109.	8.9	32
59	Physiological and biophysical properties of the auditory system of the New Zealand wetaHemideina crassidens (Blanchard, 1851) (Ensifera: Stenopelmatidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980, 141, 31-37.	1.6	31
60	The organizer in evolution–gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Developmental Biology, 2015, 399, 337-347.	2.0	28
61	Wind-sensitive interneurones in the terminal ganglion of praying mantids. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 159, 773-789.	1.6	26
62	The wind-sensitive cercal receptor/giant interneurone system of the locust,Locusta migratoria. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 165, 495-510.	1.6	26
63	Embryonic development of the innervation of the locust extensor tibiae muscle by identified neurons: Formation and elimination of inappropriate axon branches. Developmental Biology, 1990, 137, 194-206.	2.0	26
64	Dual RNAâ€sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Molecular Ecology, 2020, 29, 3921-3937.	3.9	26
65	Sequence and Expression of Grasshopper Antennapedia: Comparison toDrosophila. Developmental Biology, 1995, 172, 452-465.	2.0	25
66	Sequence and expression of four coral G protein-coupled receptors distinct from all classifiable members of the rhodopsin family. Gene, 2007, 392, 14-21.	2.2	24
67	Animal Evolution: Trichoplax, Trees, and Taxonomic Turmoil. Current Biology, 2008, 18, R1003-R1005.	3.9	22
68	Coral genomics and transcriptomics â€" Ushering in a new era in coral biology. Journal of Experimental Marine Biology and Ecology, 2011, 408, 114-119.	1.5	22
69	Structure and development of the tracheal organ in the mesothoracic leg of the cricket Teleogryllus commodus (Walker). Cell and Tissue Research, 1974, 147, 325-334.	2.9	19
70	Phylogenomics Reveals an Anomalous Distribution of USP Genes in Metazoans. Molecular Biology and Evolution, 2011, 28, 153-161.	8.9	19
71	Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis. Developmental Biology, 2019, 446, 56-67.	2.0	19
72	Implications of cnidarian gene expression patterns for the origins of bilaterality is the glass half full or half empty?. Integrative and Comparative Biology, 2007, 47, 701-711.	2.0	18

#	Article	IF	Citations
73	ELECTRICAL ACTIVITY AND BEHAVIOR IN THE SOLITARY HYDROIDCORYMORPHA PALMA.II. CONDUCTING SYSTEMS. Biological Bulletin, 1973, 145, 243-264.	1.8	17
74	The structure of the USP/RXR of Xenos pecki indicates that Strepsiptera are not closely related to Diptera. Development Genes and Evolution, 2005, 215, 213-219.	0.9	17
75	The gene complement of the ancestral bilaterian - was Urbilateria a monster?. Journal of Biology, 2009, 8, 89.	2.7	17
76	Development of the auditory tympana in the cricketTeleogryllus commodus (Walker): Experiments on regeneration and transplantation. Experientia, 1979, 35, 324-325.	1.2	16
77	Analyses of Corallimorpharian Transcriptomes Provide New Perspectives on the Evolution of Calcification in the Scleractinia (Corals). Genome Biology and Evolution, 2017, 9, 150-160.	2.5	16
78	A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora - morphology, transcriptome, and developmental gene expression. BMC Evolutionary Biology, 2016, 16, 48.	3.2	15
79	Activity Patterns and Retinal Pigment Migration in Pagurus (Decapoda, Paguridea). Crustaceana, 1968, 14, 302-306.	0.3	14
80	Structure of the auditory system of the weta Hemideina crassidens (Blanchard, 1851) (Orthoptera,) Tj ETQq0 0	0 rgBT /Ο\	verlock 10 Tf 5
81	The cercal receptor system of the praying mantid, Archimantis brunneriana Sauss Cell and Tissue Research, 1982, 224, 55-70.	2.9	13
82	Phylogeny: The Continuing Classificatory Conundrum of Chaetognaths. Current Biology, 2006, 16, R593-R596.	3.9	12
83	The cercal receptor system of the praying mantid, Archimantis brunneriana Sauss Cell and Tissue Research, 1982, 224, 71-80.	2.9	11
84	Tandem organization of independently duplicated homeobox genes in the basal cnidarian Acropora millepora. Development Genes and Evolution, 2005, 215, 268-273.	0.9	11
85	ELECTRICAL ACTIVITY AND BEHAVIOR IN THE SOLITARY HYDROIDCORYMORPHA PALMA.I. SPONTANEOUS ACTIVITY IN WHOLE ANIMALS AND IN ISOLATED PARTS. Biological Bulletin, 1973, 145, 223-242.	1.8	10
86	Cloning of a grasshopper cDNA coding for a protein homologous to the A1, A2/B1 proteins of mammalian hnRNP. Nucleic Acids Research, 1991, 19, 397-397.	14.5	10
87	The Role of DNA Methylation in Genome Defense in Cnidaria and Other Invertebrates. Molecular Biology and Evolution, 2022, 39, .	8.9	10
88	Parallel inputs shape the response of a giant interneurone in the cercal system of the locust. Journal of Insect Physiology, 1989, 35, 305-312.	2.0	8
89	Putting placozoans on the (phylogeographic) map. Molecular Ecology, 2010, 19, 2181-2183.	3.9	5
90	Comparative transcriptomic analyses of Chromera and Symbiodiniaceae. Environmental Microbiology Reports, 2020, 12, 435-443.	2.4	4

ARTICLE IF CITATIONS

91 Cnidarian Gene Expression Patterns and the Origins of Bilateralityâ€"Are Cnidarians Reading the Same
Game Plan as "Higher―Animals?., 2010, , 197-216.

1 1