List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291561/publications.pdf Version: 2024-02-01

Adnalid Feddy

#	Article	IF	CITATIONS
1	Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nature Biomedical Engineering, 2022, 6, 207-220.	22.5	16
2	The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle. PLoS ONE, 2022, 17, e0254274.	2.5	3
3	The cell polarity protein Vangl2 in the muscle shapes the neuromuscular synapse by binding to and regulating the tyrosine kinase MuSK. Science Signaling, 2022, 15, eabg4982.	3.6	4
4	Alteration of skeletal and cardiac muscles function in <i>DBA/2J mdx</i> mice background: a focus on high intensity interval training. Intractable and Rare Diseases Research, 2021, 10, 269-275.	0.9	0
5	Myod1 and GR coordinate myofiber-specific transcriptional enhancers. Nucleic Acids Research, 2021, 49, 4472-4492.	14.5	18
6	Absence of Desmin Results in Impaired Adaptive Response to Mechanical Overloading of Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2021, 9, 662133.	3.7	8
7	Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. International Journal of Molecular Sciences, 2021, 22, 306.	4.1	15
8	Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic <i>mdx</i> mouse. Journal of Physiology, 2020, 598, 3667-3689.	2.9	17
9	Differential physiological role of BIN1 isoforms in skeletal muscle development, function and regeneration. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	13
10	An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Science Translational Medicine, 2019, 11, .	12.4	15
11	Effects of the selective inhibition of proteasome caspase-like activity by CLi a derivative of nor-cerpegin in dystrophic mdx mice. PLoS ONE, 2019, 14, e0215821.	2.5	3
12	Functional muscle recovery following dystrophin and myostatin exon splice modulation in aged mdx mice. Human Molecular Genetics, 2019, 28, 3091-3100.	2.9	14
13	Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. Journal of Clinical Investigation, 2019, 129, 4739-4744.	8.2	64
14	Alleleâ€specific silencing therapy for Dynamin 2â€related dominant centronuclear myopathy. EMBO Molecular Medicine, 2018, 10, 239-253.	6.9	40
15	Aged Nicotinamide Riboside Kinase 2 Deficient Mice Present an Altered Response to Endurance Exercise Training. Frontiers in Physiology, 2018, 9, 1290.	2.8	18
16	Improvement of Dystrophic Muscle Fragility by Short-Term Voluntary Exercise through Activation of Calcineurin Pathway in mdx Mice. American Journal of Pathology, 2018, 188, 2662-2673.	3.8	20
17	Effect of constitutive inactivation of the myostatin gene on the gain in muscle strength during postnatal growth in two murine models. Muscle and Nerve, 2017, 55, 254-261.	2.2	4
18	HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. American Journal of Pathology, 2017, 187, 505-516.	3.8	28

#	Article	IF	CITATIONS
19	R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways. Cell Reports, 2017, 18, 2320-2330.	6.4	40
20	Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E12-E25.	3.5	15
21	A New AAV10-U7-Mediated Gene Therapy Prolongs Survival and Restores Function in an ALS Mouse Model. Molecular Therapy, 2017, 25, 2038-2052.	8.2	61
22	Voluntary Exercise Improves Cardiac Function and Prevents Cardiac Remodeling in a Mouse Model of Dilated Cardiomyopathy. Frontiers in Physiology, 2017, 8, 899.	2.8	13
23	PGC-11± modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle. Skeletal Muscle, 2016, 6, 38.	4.2	35
24	500. Gene Therapy Rescues Disease Phenotype in the Oculopharyngeal Muscular Dystrophy Mouse Model. Molecular Therapy, 2016, 24, S199.	8.2	0
25	Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscular Disorders, 2016, 26, 490-499.	0.6	30
26	Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skeletal Muscle, 2016, 6, 23.	4.2	28
27	Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skeletal Muscle, 2016, 6, 39.	4.2	28
28	Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in <i>mdx</i> mice of both genders. Muscle and Nerve, 2015, 52, 788-794.	2.2	17
29	Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. American Journal of Pathology, 2015, 185, 2012-2024.	3.8	15
30	Citrulline Supplementation Induces Changes in Body Composition and Limits Age-Related Metabolic Changes in Healthy Male Rats. Journal of Nutrition, 2015, 145, 1429-1437.	2.9	43
31	The transcriptional coregulator PGC-11 ² controls mitochondrial function and anti-oxidant defence in skeletal muscles. Nature Communications, 2015, 6, 10210.	12.8	59
32	Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nature Medicine, 2015, 21, 270-275.	30.7	263
33	Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype. FASEB Journal, 2015, 29, 2473-2483.	0.5	40
34	Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nature Communications, 2015, 6, 7205.	12.8	76
35	<i>HACD1</i> , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth. Journal of Molecular Cell Biology, 2015, 7, 429-440.	3.3	40
36	Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. Journal of Clinical Investigation, 2014, 124, 1350-1363.	8.2	115

ARNAUD FERRY

#	Article	IF	CITATIONS
37	Six Homeoproteins and a linc-RNA at the Fast MYH Locus Lock Fast Myofiber Terminal Phenotype. PLoS Genetics, 2014, 10, e1004386.	3.5	56
38	REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E983-E993.	3.5	81
39	Myofiber Androgen Receptor Promotes Maximal Mechanical Overload-Induced Muscle Hypertrophy and Fiber Type Transition in Male Mice. Endocrinology, 2014, 155, 4739-4748.	2.8	18
40	Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization. Journal of Cell Biology, 2014, 205, 377-393.	5.2	60
41	Synemin acts as a regulator of signalling molecules in skeletal muscle hypertrophy. Journal of Cell Science, 2014, 127, 4589-601.	2.0	31
42	Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R444-R454.	1.8	65
43	Blockade of ActRIIB Signaling Triggers Muscle Fatigability and Metabolic Myopathy. Molecular Therapy, 2014, 22, 1423-1433.	8.2	63
44	AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal, 2014, 28, 3211-3224.	0.5	182
45	Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscular Disorders, 2014, 24, 960-972.	0.6	11
46	Acute effect of androgens on maximal force-generating capacity and electrically evoked calcium transient in mouse skeletal muscles. Steroids, 2014, 87, 6-11.	1.8	9
47	Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skeletal Muscle, 2013, 3, 4.	4.2	27
48	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
49	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	21.4	379
50	The beneficial effect of myostatin deficiency on maximal muscle force and power is attenuated with age. Experimental Gerontology, 2013, 48, 183-190.	2.8	22
51	Voluntary Physical Activity Protects from Susceptibility to Skeletal Muscle Contraction–Induced Injury But Worsens Heart Function in mdx Mice. American Journal of Pathology, 2013, 182, 1509-1518.	3.8	45
52	The Rag2–ll2rb–Dmd– Mouse: a Novel Dystrophic and Immunodeficient Model to Assess Innovating Therapeutic Strategies for Muscular Dystrophies. Molecular Therapy, 2013, 21, 1950-1957.	8.2	23
53	Myotubularin and PtdIns3 <i>P</i> remodel the sarcoplasmic reticulum in muscle <i>in vivo</i> . Journal of Cell Science, 2013, 126, 1806-19.	2.0	51
54	Protective effect of female gender–related factors on muscle forceâ€generating capacity and fragility in the dystrophic <i>mdx</i> mouse. Muscle and Nerve, 2013, 48, 68-75.	2.2	19

#	Article	IF	CITATIONS
55	Phosphatase-Dead Myotubularin Ameliorates X-Linked Centronuclear Myopathy Phenotypes in Mice. PLoS Genetics, 2012, 8, e1002965.	3.5	49
56	Molecular, Physiological, and Motor Performance Defects in DMSXL Mice Carrying >1,000 CTG Repeats from the Human DM1 Locus. PLoS Genetics, 2012, 8, e1003043.	3.5	95
57	Combined Effect of AAV-U7-Induced Dystrophin Exon Skipping and Soluble Activin Type IIB Receptor in <i>mdx</i> Mice. Human Gene Therapy, 2012, 23, 1269-1279.	2.7	31
58	G.P.18 Muscle pathology and dysfunction in a novel mouse model of COLVI-myopathy. Neuromuscular Disorders, 2012, 22, 827-828.	0.6	2
59	C.P.7 Dynamin 2 in skeletal muscle development and diseases. Neuromuscular Disorders, 2012, 22, 842-843.	0.6	0
60	Impaired Adaptive Response to Mechanical Overloading in Dystrophic Skeletal Muscle. PLoS ONE, 2012, 7, e35346.	2.5	25
61	Effect of locomotor training on muscle performance in the context of nerve–muscle communication dysfunction. Muscle and Nerve, 2012, 45, 567-577.	2.2	8
62	A new model of experimental fibrosis in hindlimb skeletal muscle of adult <i>mdx</i> mouse mimicking muscular dystrophy. Muscle and Nerve, 2012, 45, 803-814.	2.2	37
63	Leucine and citrulline modulate muscle function in malnourished aged rats. Amino Acids, 2012, 42, 1425-1433.	2.7	50
64	Delivery of AAV2/9-Microdystrophin Genes Incorporating Helix 1 of the Coiled-Coil Motif in the C-Terminal Domain of Dystrophin Improves Muscle Pathology and Restores the Level of α1-Syntrophin and α-Dystrobrevin in Skeletal Muscles of mdx Mice. Human Gene Therapy, 2011, 22, 1379-1388.	2.7	52
65	Increased Expression of Wild-Type or a Centronuclear Myopathy Mutant of Dynamin 2 in Skeletal Muscle of Adult Mice Leads to Structural Defects and Muscle Weakness. American Journal of Pathology, 2011, 178, 2224-2235.	3.8	84
66	Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy. PLoS ONE, 2011, 6, e23094.	2.5	61
67	Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nature Medicine, 2011, 17, 720-725.	30.7	299
68	Eccentric stimulation reveals an involvement of FGF6 in muscle resistance to mechanical stress. European Journal of Applied Physiology, 2011, 111, 1507-1515.	2.5	2
69	Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Human Molecular Genetics, 2011, 20, 694-704.	2.9	87
70	DHPR α1S subunit controls skeletal muscle mass and morphogenesis. EMBO Journal, 2010, 29, 643-654.	7.8	59
71	Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease. Human Molecular Genetics, 2010, 19, 684-696.	2.9	51
72	Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Human Molecular Genetics, 2010, 19, 2191-2207.	2.9	78

#	Article	IF	CITATIONS
73	A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Human Molecular Genetics, 2010, 19, 4820-4836.	2.9	107
74	Localization of Butyrylcholinesterase at the Neuromuscular Junction of Normal and Acetylcholinesterase Knockout Mice. Journal of Histochemistry and Cytochemistry, 2010, 58, 1075-1082.	2.5	8
75	Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proceedings of the United States of America, 2010, 107, 14327-14332.	7.1	89
76	Combination of Myostatin Pathway Interference and Dystrophin Rescue Enhances Tetanic and Specific Force in Dystrophic mdx Mice. Molecular Therapy, 2010, 18, 881-887.	8.2	62
77	Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin–proteasome pathway. Neuromuscular Disorders, 2010, 20, 319-325.	0.6	36
78	Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Cell Biology, 2009, 187, 859-874.	5.2	320
79	Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Experimental Medicine, 2009, 206, i33-i33.	8.5	0
80	Effect of fluoxetine on neuromuscular function in acetylcholinesterase (AChE) knockout mice. Chemico-Biological Interactions, 2008, 175, 113-114.	4.0	6
81	Genetic ablation of acetylcholinesterase alters muscle function in mice. Chemico-Biological Interactions, 2008, 175, 129-130.	4.0	6
82	Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz–Jampel syndrome neuromyotonia. Human Molecular Genetics, 2008, 17, 3166-3179.	2.9	53
83	Premature Aging in Skeletal Muscle Lacking Serum Response Factor. PLoS ONE, 2008, 3, e3910.	2.5	70
84	TGF-β1 favors the development of fast type identity during soleus muscle regeneration. Journal of Muscle Research and Cell Motility, 2006, 27, 1-8.	2.0	21
85	Exogenous Pleiotrophin Applied to Lesioned Nerve Impairs Muscle Reinnervation. Neurochemical Research, 2006, 31, 907-913.	3.3	29
86	Recovery of slow skeletal muscle after injury in the senescent rat. Experimental Gerontology, 2003, 38, 529-537.	2.8	14
87	Differential Modification of Myosin Heavy Chain Expression by Tenotomy in Regenerating Fast and Slow Muscles of the Rat. Experimental Physiology, 2000, 85, 187-191.	2.0	13
88	Effect of anabolic/androgenic steroids on myosin heavy chain expression in hindlimb muscles of male rats. European Journal of Applied Physiology and Occupational Physiology, 2000, 81, 155-158.	1.2	20
89	Differential modification of myosin heavy chain expression by tenotomy in regenerating fast and slow muscles of the rat. Experimental Physiology, 2000, 85, 187-191.	2.0	4
90	Effect of increased physical activity on growth and differentiation of regenerating rat soleus muscle. European Journal of Applied Physiology, 1997, 76, 270-276.	2.5	11