Sung Yang

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5291367/publications.pdf
Version: 2024-02-01

1 A microfluidic device for continuous, real time blood plasma separation. Lab on A Chip, 2006, 6,
871-880.

A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosensors and Bioelectronics, 2015, 64, 338-344.

Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel. Sensors, 2015, 15, 11823-11835.

Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sensors and Actuators B: Chemical, 2014, 196, 31-38.

Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition
5 and analysis of long-lasting surface hydrophilicity. Sensors and Actuators B: Chemical, 2012, 162, 425-434.

A microfluidic device for label-free detection of Escherichia coli in drinking water using positive
6 dielectrophoretic focusing, capturing, and impedance measurement. Biosensors and Bioelectronics, 2015, 74, 1011-1015.

7 Effects of Aggregation on Blood Sedimentation and Conductivity. PLoS ONE, 2015, 10, e0129337.

Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration. Biosensors and Bioelectronics, 2018, 107, 103-110.
10.1

A Highly Accurate and Consistent Microfluidic Viscometer for Continuous Blood Viscosity
A Highly Accurate and Consistent Microfluidic Viscon
Measurement. Artificial Organs, 2010, 34, 944-949.

A Solid-State Thin-Film $\mathrm{Ag} / \mathrm{AgCl}$ Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor. Sensors, 2015, 15, 6469-6482.

A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical
Detection of Anthrax Protective Antigen. ACS Nano, 2013, 7, 9452-9460.
$14.6 \quad 56$

Stretchable Multichannel Electromyography Sensor Array Covering Large Area for Controlling Home
12 Electronics with Distinguishable Signals from Multiple Muscles. ACS Applied Materials \&
8.0

Interfaces, 2016, 8, 21070-21076.

Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments. Lab on A
Chip, 2012, 12, 1881 .

Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids. Microfluidics and Nanofluidics, 2013, 14, 657-668.

Blood Plasma Separation in Microfluidic Channels Using Flow Rate Control. ASAIO Journal, 2005, 51, 585-590.

On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood. Scientific Reports, 2015, 5, 15167.

\#	Article	IF	Citations
19	Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate. Sensors, 2017, 17, 1442.	3.8	35
20	A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability. Analyst, The, 2019, 144, 3144-3157.	3.5	35
21	Electrochemical impedance spectroscopy of blood for sensitive detection of blood hematocrit, sedimentation and dielectric properties. Analytical Methods, 2017, 9, 3302-3313.	2.7	34
22	Association Between Renin-Angiotensin-Aldosterone System Inhibitors and COVID-19 Infection in South Korea. Hypertension, 2020, 76, 742-749.	2.7	33
23	Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter. Biosensors and Bioelectronics, 2012, 35, 416-420.	10.1	31
24	Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Lab on A Chip, 2007, 7, 588-595.	6.0	28
25	A Microfluidic Device for Continuous White Blood Cell Separation and Lysis From Whole Blood. Artificial Organs, 2010, 34, 996-1002.	1.9	27

Continuous, rapid concentration of foodborne bacteria (Staphylococcus aureus, Salmonella) Tj ETQq0 00 rgBT /Overlock 10 Tf 50467
Control, 2020, 114, 107229.
A fully integrated bacterial pathogen detection system based on count-on-a-cartridge platform for
rapid, ultrasensitive, highly accurate and culture-free assay. Biosensors and Bioelectronics, 2020, 152,
112007.
29 Hydrogen Ion Sensing Using Schottky Contacted Silicon Nanowire FETs. IEEE Nanotechnology
Magazine, 2008, 7, 745-748.
$2.0 \quad 20$Control, 2020, 114, 107229.

Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear
stress. Computers and Mathematics With Applications, 2014, 67, 1154-1170.
stress. Computers and Mathematics With Applications, 2014, 67, 1154-1170.10.121
112007.
30 Microfluidic Devices for Continuous Blood Plasma Separation and Analysis During Pediatric 1.6 19
Cardiopulmonary Bypass Procedures. ASAIO Journal, 2006, 52, 698-704.
Facile method for constructing an effective electron transfer mediating layer using
18ferrocene-containing multifunctional redox copolymer. Electrochimica Acta, 2014, 133, 40-48.Rapid Detection of Norovirus from Fresh Lettuce Using Immunomagnetic Separation and a Quantum1.717Dots Assay. Journal of Food Protection, 2013, 76, 707-711.Experimental Investigation of Pulsatility Effect on the Deformability and Hemolysis of Blood Cells.1.916Artificial Organs, 2010, 34, E103-9.

A single snapshot multiplex immunoassay platform utilizing dense test lines based on engineered
Fabrication of PDMS through-holes using the MIMIC method and the surface treatment by
35 atmospheric-pressure $\mathrm{CH}\langle$ sub $>4\langle/ \mathrm{sub}\rangle /$ He RF plasma. Journal of Micromechanics and 2.6 15
Microengineering, 2011, 21, 097001.
37

> Improvement of the accuracy of continuous hematocrit measurement under various blood flow conditions. Applied Physics Letters, 2014,104, .
3.3

15

The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell
38 Aggregation in Extracorporeal Circulation. Korean Journal of Thoracic and Cardiovascular Surgery,
0.6

2016, 49, 145-150.
15

Continuous cell cross over and lysis in a microfluidic device. Microfluidics and Nanofluidics, 2010, 8,
695-701.
2.2

High-density immobilization of antibodies onto nanobead-coated cyclic olefin copolymer plastic surfaces for application as a sensitive immunoassay chip. Biomedical Microdevices, 2013, 15, 691-698.
2.8

13

Effects of osmolality and solutes on the morphology of red blood cells according to
three-dimensional refractive index tomography. PLoS ONE, 2021, 16, e0262106.
$2.5 \quad 13$

Electrochemical impedance spectroscopy of blood. Part 3: a study of the correlation between blood
42 conductivity and sedimentation to shorten the erythrocyte sedimentation rate test. Analytical
2.710

Methods, 2018, 10, 180-189.
Bead Packing and Release Using Flexible Polydimethylsiloxane Membrane for Semiâ€Continuous
Biosensing. Artificial Organs, 2011, 35, E136-44.
Biosensing. Artificial Organs, 2011, 35, E136-44.

Association between hemoglobin variability and incidence of hypertension over 40Âyears: a Korean
national cohort study. Scientific Reports, 2020, 10, 12061.

Effect of aspirin on coronavirus disease 2019. Medicine (United States), 2021, 100, e26670.
1.0

Electrochemical impedance spectroscopy of blood. Part 2: numerical analysis of experimental
46 dielectric spectra using the biconcave shape of human erythrocytes. Analytical Methods, 2018, 10,
2.7

6 168-179.

47	Rapid bacteria-detection platform based on magnetophoretic concentration, dielectrophoretic separation, and impedimetric detection. Analytica Chimica Acta, 2021, 1173, 338696.	5.4	6
48	A movable polymeric microneedle array actuated by thermopneumatic force. Sensors and Actuators A: Physical, 2016, 237, 128-135.	4.1	5
49	Temperature Correction to Enhance Blood Clucose Monitoring Accuracy Using Electrical Impedance Spectroscopy. Sensors, 2020, 20, 6231.	3.8	5

50 Electrochemical Impedance Characterization of Blood Cell Suspensionsâ€"Part 2: Three-Phase Systems
$4.2 \quad 5$
With Single-Shelled Particles. IEEE Transactions on Biomedical Engineering, 2020, 67, 2979-2989.

Sensitive electrochemical immunosensor to detect prohibitin 2, a potential blood cancer biomarker.
Talanta, 2022, 238, 123053.
5.5

5
55

Electrochemical Impedance Characterization of Blood Cell Suspensions. Part 1: Basic Theory and
Application to Two-Phase Systems. IEEE Transactions on Biomedical Engineering, 2020, 67, 2965-2978.
4.2

4

56 A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen

```
Pediatric cardiopulmonary bypass circuits: a review of studies conducted at the Penn State Pediatric
0.4 3
Cardiac Research Laboratories. Journal of Extra-Corporeal Technology, 2009, 41, P50-8.
0.43
Pediatric cardiopulmonary bypass circuits: a review of studies conducted at the Penn St
Cardiac Research Laboratories. Journal of Extra-Corporeal Technology, 2009, 41, P50-8.
```

2.5

2
The Effects of Intravenous Fluid Viscosity on the Act
Journal of Korean Medical Science, 2022, 37, e71.

Viscosity measurement using hydrodynamic divergencing chamber and digital counting in
1
$59 \begin{aligned} & \text { Viscosity measurement using hy } \\ & \text { microfluidic channels. , 2010, , }\end{aligned}$

60 Special issue on BioMEMS. Biomedical Engineering Letters, 2012, 2, 69-70.
4.1

1
Protein patterning utilizing region-specific control of wettability by surface modification under

atmospheric pressure. Applied Physics Letters, 2013, 103, 123701.
61Microfluidic Single-Cell Proteomics Assay Chip: Lung Cancer Cell Line Case Study. Micromachines,
Impedance measurement of normal and cancerous human breast cells using a microfluidic tunnel. , 2010, , .

