
Kim N Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291162/publications.pdf Version: 2024-02-01

KIM N CDEEN

#	Article	IF	CITATIONS
1	Microgliaâ€specific <scp>ApoE</scp> knockâ€out does not alter Alzheimer's disease plaque pathogenesis or gene expression. Clia, 2022, 70, 287-302.	4.9	20
2	Cortical diurnal rhythms remain intact with microglial depletion. Scientific Reports, 2022, 12, 114.	3.3	18
3	Commentary: How Do Microglia Regulate Neural Circuit Connectivity and Activity in the Adult Brain?. Neuroscience Insights, 2022, 17, 263310552110711.	1.6	1
4	<scp>MAC2</scp> is a longâ€lasting marker of peripheral cell infiltrates into the mouse <scp>CNS</scp> after bone marrow transplantation and coronavirus infection. Glia, 2022, 70, 875-891.	4.9	11
5	Microglia Do Not Restrict SARS-CoV-2 Replication following Infection of the Central Nervous System of K18-Human ACE2 Transgenic Mice. Journal of Virology, 2022, 96, jvi0196921.	3.4	18
6	Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nature Communications, 2021, 12, 2421.	12.8	53
7	Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus. Cell Reports, 2021, 36, 109548.	6.4	10
8	Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cellular and Molecular Immunology, 2021, 18, 2472-2488.	10.5	61
9	Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. ELife, 2021, 10, .	6.0	19
10	Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R ^{+/â^'} mouse model of ALSP, which can be rescued via CSF1R inhibitors. Science Advances, 2021, 7, .	10.3	28
11	On the utility of CSF1R inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
12	Microglia Elimination Increases Neural Circuit Connectivity and Activity in Adult Mouse Cortex. Journal of Neuroscience, 2021, 41, 1274-1287.	3.6	76
13	Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Scientific Data, 2021, 8, 270.	5.3	138
14	Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 785276.	2.8	58
15	Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain, 2020, 143, 266-288.	7.6	90
16	To Kill a Microglia: A Case for CSF1R Inhibitors. Trends in Immunology, 2020, 41, 771-784.	6.8	120
17	Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine, 2020, 58, 102919.	6.1	123
18	Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. Journal of Neuroinflammation, 2020, 17, 279.	7.2	30

Kim N Green

#	Article	IF	CITATIONS
19	Model organism development and evaluation for lateâ€onset Alzheimer's disease: MODELâ€AD. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12110.	3.7	63
20	Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia, 2020, 68, 2345-2360.	4.9	49
21	Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nature Communications, 2019, 10, 3758.	12.8	478
22	Microglia Regulate Pruning of Specialized Synapses in the Auditory Brainstem. Frontiers in Neural Circuits, 2019, 13, 55.	2.8	38
23	Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell, 2018, 17, e12832.	6.7	219
24	A limited capacity for microglial repopulation in the adult brain. Glia, 2018, 66, 2385-2396.	4.9	65
25	Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity, 2017, 61, 1-11.	4.1	266
26	Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia, 2017, 65, 931-944.	4.9	163
27	Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Molecular Neurodegeneration, 2017, 12, 66.	10.8	64
28	Elimination of microglia improves cognitive function following cranial irradiation. Scientific Reports, 2016, 6, 31545.	3.3	195
29	Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. Brain, 2016, 139, 1265-1281.	7.6	514
30	Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. Journal of Neuroinflammation, 2015, 12, 139.	7.2	380
31	Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus. Journal of Neuroscience, 2015, 35, 9977-9989.	3.6	195
32	Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation. PLoS ONE, 2015, 10, e0122912.	2.5	180
33	Age-related downregulation of the CaV3.1 T-type calcium channel as a mediator of amyloid beta production. Neurobiology of Aging, 2014, 35, 1002-1011.	3.1	50
34	Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain. Neuron, 2014, 82, 380-397.	8.1	1,350
35	Synergistic effects of amyloid-beta and wild-type human tau on dendritic spine loss in a floxed double transgenic model of Alzheimer's disease. Neurobiology of Disease, 2014, 64, 107-117.	4.4	96
36	7,8-Dihydroxyflavone, a Small Molecule TrkB Agonist, Improves Spatial Memory and Increases Thin Spine Density in a Mouse Model of Alzheimer Disease-Like Neuronal Loss. PLoS ONE, 2014, 9, e91453.	2.5	101

KIM N GREEN

#	Article	IF	CITATIONS
37	Mifepristone Alters Amyloid Precursor Protein Processing to Preclude Amyloid Beta and Also Reduces Tau Pathology. Biological Psychiatry, 2013, 74, 357-366.	1.3	87
38	Animal Models of Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006320-a006320.	6.2	336
39	APP Knockout Mice Experience Acute Mortality as the Result of Ischemia. PLoS ONE, 2012, 7, e42665.	2.5	36
40	Genetic Knockdown of Brain-Derived Neurotrophic Factor in 3xTg-AD Mice Does Not Alter AÎ ² or Tau Pathology. PLoS ONE, 2012, 7, e39566.	2.5	35
41	Presenilin Is Necessary for Efficient Proteolysis through the Autophagy–Lysosome System in a γ-Secretase-Independent Manner. Journal of Neuroscience, 2011, 31, 2781-2791.	3.6	133
42	ST101 induces a novel 17kDa APP cleavage that precludes AÎ ² generation in vivo. Annals of Neurology, 2011, 69, 831-844.	5.3	32
43	Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy, 2011, 7, 664-665.	9.1	15
44	Reductions in Amyloid-β-Derived Neuroinflammation, with Minocycline, Restore Cognition but do not Significantly Affect Tau Hyperphosphorylation. Journal of Alzheimer's Disease, 2010, 21, 527-542.	2.6	79
45	Relevance of Transgenic Mouse Models to Human Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 6033-6037.	3.4	129
46	Calcium in the initiation, progression and as an effector of Alzheimer's disease pathology. Journal of Cellular and Molecular Medicine, 2009, 13, 2787-2799.	3.6	48
47	Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiology of Aging, 2008, 29, 1607-1618.	3.1	316
48	Linking Calcium to $A\hat{I}^2$ and Alzheimer's Disease. Neuron, 2008, 59, 190-194.	8.1	302
49	Nicotinamide Restores Cognition in Alzheimer's Disease Transgenic Mice via a Mechanism Involving Sirtuin Inhibition and Selective Reduction of Thr231-Phosphotau. Journal of Neuroscience, 2008, 28, 11500-11510.	3.6	339
50	SERCA pump activity is physiologically regulated by presenilin and regulates amyloid β production. Journal of Cell Biology, 2008, 181, 1107-1116.	5.2	268
51	M1 Receptors Play a Central Role in Modulating AD-like Pathology in Transgenic Mice. Neuron, 2006, 49, 671-682.	8.1	383
52	Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer's disease. Journal of Neurochemistry, 2005, 94, 1711-1718.	3.9	149
53	Lipopolysaccharide-Induced Inflammation Exacerbates Tau Pathology by a Cyclin-Dependent Kinase 5-Mediated Pathway in a Transgenic Model of Alzheimer's Disease. Journal of Neuroscience, 2005, 25, 8843-8853.	3.6	607
54	Intraneuronal Aβ Causes the Onset of Early Alzheimer's Disease-Related Cognitive Deficits in Transgenic Mice. Neuron, 2005, 45, 675-688.	8.1	1,149

#	Article	IF	CITATIONS
55	Divergent pathways account for two distinct effects of amyloid β peptides on exocytosis and Ca2+ currents: involvement of ROS and NF-κB. Journal of Neurochemistry, 2002, 81, 1043-1051.	3.9	34
56	Amyloid β peptides mediate hypoxic augmentation of Ca2+ channels. Journal of Neurochemistry, 2001, 77, 953-956.	3.9	77