Kim N Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5291162/publications.pdf

Version: 2024-02-01

		87888	149698
56	9,927	38	56
papers	citations	h-index	g-index
67	67	67	12475
67	67	67	13475
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain. Neuron, 2014, 82, 380-397.	8.1	1,350
2	Intraneuronal Aβ Causes the Onset of Early Alzheimer's Disease-Related Cognitive Deficits in Transgenic Mice. Neuron, 2005, 45, 675-688.	8.1	1,149
3	Lipopolysaccharide-Induced Inflammation Exacerbates Tau Pathology by a Cyclin-Dependent Kinase 5-Mediated Pathway in a Transgenic Model of Alzheimer's Disease. Journal of Neuroscience, 2005, 25, 8843-8853.	3.6	607
4	Eliminating microglia in Alzheimerâ \in TM s mice prevents neuronal loss without modulating amyloid- \hat{l}^2 pathology. Brain, 2016, 139, 1265-1281.	7.6	514
5	Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nature Communications, 2019, 10, 3758.	12.8	478
6	M1 Receptors Play a Central Role in Modulating AD-like Pathology in Transgenic Mice. Neuron, 2006, 49, 671-682.	8.1	383
7	Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. Journal of Neuroinflammation, 2015, 12, 139.	7.2	380
8	Nicotinamide Restores Cognition in Alzheimer's Disease Transgenic Mice via a Mechanism Involving Sirtuin Inhibition and Selective Reduction of Thr231-Phosphotau. Journal of Neuroscience, 2008, 28, 11500-11510.	3.6	339
9	Animal Models of Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006320-a006320.	6.2	336
10	${\sf A\hat{l}^2}$ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiology of Aging, 2008, 29, 1607-1618.	3.1	316
11	Linking Calcium to AÎ ² and Alzheimer's Disease. Neuron, 2008, 59, 190-194.	8.1	302
12	SERCA pump activity is physiologically regulated by presenilin and regulates amyloid \hat{l}^2 production. Journal of Cell Biology, 2008, 181, 1107-1116.	5.2	268
13	Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity, 2017, 61, 1-11.	4.1	266
14	Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell, 2018, 17, e12832.	6.7	219
15	Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus. Journal of Neuroscience, 2015, 35, 9977-9989.	3.6	195
16	Elimination of microglia improves cognitive function following cranial irradiation. Scientific Reports, 2016, 6, 31545.	3.3	195
17	Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation. PLoS ONE, 2015, 10, e0122912.	2.5	180
18	Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia, 2017, 65, 931-944.	4.9	163

#	Article	IF	Citations
19	Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer's disease. Journal of Neurochemistry, 2005, 94, 1711-1718.	3.9	149
20	Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease. Scientific Data, 2021, 8, 270.	5.3	138
21	Presenilin Is Necessary for Efficient Proteolysis through the Autophagy–Lysosome System in a γ-Secretase-Independent Manner. Journal of Neuroscience, 2011, 31, 2781-2791.	3.6	133
22	Relevance of Transgenic Mouse Models to Human Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 6033-6037.	3.4	129
23	Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine, 2020, 58, 102919.	6.1	123
24	To Kill a Microglia: A Case for CSF1R Inhibitors. Trends in Immunology, 2020, 41, 771-784.	6.8	120
25	7,8-Dihydroxyflavone, a Small Molecule TrkB Agonist, Improves Spatial Memory and Increases Thin Spine Density in a Mouse Model of Alzheimer Disease-Like Neuronal Loss. PLoS ONE, 2014, 9, e91453.	2.5	101
26	Synergistic effects of amyloid-beta and wild-type human tau on dendritic spine loss in a floxed double transgenic model of Alzheimer's disease. Neurobiology of Disease, 2014, 64, 107-117.	4.4	96
27	Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain, 2020, 143, 266-288.	7.6	90
28	Mifepristone Alters Amyloid Precursor Protein Processing to Preclude Amyloid Beta and Also Reduces Tau Pathology. Biological Psychiatry, 2013, 74, 357-366.	1.3	87
29	Reductions in Amyloid-Î ² -Derived Neuroinflammation, with Minocycline, Restore Cognition but do not Significantly Affect Tau Hyperphosphorylation. Journal of Alzheimer's Disease, 2010, 21, 527-542.	2.6	79
30	Amyloidâ€ f β peptides mediate hypoxic augmentation of Ca2+ channels. Journal of Neurochemistry, 2001, 77, 953-956.	3.9	77
31	Microglia Elimination Increases Neural Circuit Connectivity and Activity in Adult Mouse Cortex. Journal of Neuroscience, 2021, 41, 1274-1287.	3.6	76
32	A limited capacity for microglial repopulation in the adult brain. Glia, 2018, 66, 2385-2396.	4.9	65
33	Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Molecular Neurodegeneration, 2017, 12, 66.	10.8	64
34	Model organism development and evaluation for lateâ€onset Alzheimer's disease: MODELâ€AD. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12110.	3.7	63
35	Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cellular and Molecular Immunology, 2021, 18, 2472-2488.	10.5	61
36	Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 785276.	2.8	58

#	Article	IF	CITATIONS
37	Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nature Communications, 2021, 12, 2421.	12.8	53
38	Age-related downregulation of the CaV3.1 T-type calcium channel as a mediator of amyloid beta production. Neurobiology of Aging, 2014, 35, 1002-1011.	3.1	50
39	Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia, 2020, 68, 2345-2360.	4.9	49
40	Calcium in the initiation, progression and as an effector of Alzheimer's disease pathology. Journal of Cellular and Molecular Medicine, 2009, 13, 2787-2799.	3.6	48
41	Microglia Regulate Pruning of Specialized Synapses in the Auditory Brainstem. Frontiers in Neural Circuits, 2019, 13, 55.	2.8	38
42	APP Knockout Mice Experience Acute Mortality as the Result of Ischemia. PLoS ONE, 2012, 7, e42665.	2.5	36
43	Genetic Knockdown of Brain-Derived Neurotrophic Factor in $3xTg$ -AD Mice Does Not Alter AÎ 2 or Tau Pathology. PLoS ONE, 2012, 7, e39566.	2.5	35
44	Divergent pathways account for two distinct effects of amyloid \hat{l}^2 peptides on exocytosis and Ca2+ currents: involvement of ROS and NF- \hat{l}^2 B. Journal of Neurochemistry, 2002, 81, 1043-1051.	3.9	34
45	ST101 induces a novel 17kDa APP cleavage that precludes \hat{Al}^2 generation in vivo. Annals of Neurology, 2011, 69, 831-844.	5.3	32
46	Effects of long-term and brain-wide colonization of peripheral bone marrow-derived myeloid cells in the CNS. Journal of Neuroinflammation, 2020, 17, 279.	7.2	30
47	Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R $<$ sup $>+/\hat{a}^2sup> mouse model of ALSP, which can be rescued via CSF1R inhibitors. Science Advances, 2021, 7, .$	10.3	28
48	Microgliaâ€specific <scp>ApoE</scp> knockâ€out does not alter Alzheimer's disease plaque pathogenesis or gene expression. Glia, 2022, 70, 287-302.	4.9	20
49	Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. ELife, 2021, 10 , .	6.0	19
50	Cortical diurnal rhythms remain intact with microglial depletion. Scientific Reports, 2022, 12, 114.	3.3	18
51	Microglia Do Not Restrict SARS-CoV-2 Replication following Infection of the Central Nervous System of K18-Human ACE2 Transgenic Mice. Journal of Virology, 2022, 96, jvi0196921.	3.4	18
52	Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy, 2011, 7, 664-665.	9.1	15
53	On the utility of CSF1R inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
54	<scp>MAC2</scp> is a longâ€lasting marker of peripheral cell infiltrates into the mouse <scp>CNS</scp> after bone marrow transplantation and coronavirus infection. Glia, 2022, 70, 875-891.	4.9	11

#	Article	IF	CITATIONS
55	Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus. Cell Reports, 2021, 36, 109548.	6.4	10
56	Commentary: How Do Microglia Regulate Neural Circuit Connectivity and Activity in the Adult Brain?. Neuroscience Insights, 2022, 17, 263310552110711.	1.6	1